1
|
Zheng Y, Qi C, Qiao Y, Liu K, Wang Y, Jiang W, Jiang Y, Xin F, Guo F, Zhang W, Jiang M. From formate oxidation to CO₂ reduction: The role of formate dehydrogenase in sustainable carbon utilization. Biotechnol Adv 2025; 82:108600. [PMID: 40368117 DOI: 10.1016/j.biotechadv.2025.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
The escalation of global climate change and environmental degradation has made it imperative to develop innovative strategies to mitigate carbon dioxide (CO₂) emissions and enhance its utilization. Formate dehydrogenase (FDH) is a key enzyme capable of catalyzing the reversible conversion between CO₂ and formate. Due to its critical role in sustainable carbon recycling processes, FDH has garnered significant attention in recent times. This review offers a thorough analysis of FDH, emphasizing its dual function of converting one carbon (C1) substrates and providing reducing power. Recent advancements in utilizing FDH for CO₂ reduction, both in vitro and in vivo, underscoring its potential to facilitate carbon capture and conversion under mild conditions. Additionally, this review discusses the limitations of FDH in C1 metabolism and proposes targeted strategies to address these challenges. Future research should focus on achieving a balance between energy production and carbon assimilation, mediated by FDH activity. Ultimately, this work aims to offer both theoretical insights and practical guidance, advancing microbial engineering for CO₂ reduction and resource recycling, and contributing to the development of sustainable carbon utilization technologies.
Collapse
Affiliation(s)
- Yongmin Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Chen Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yangyi Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Kang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yanxia Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
2
|
Li X, Tan W, Fan J, Li K. Surface Au-H Species as Self-Generated Prosthetic Groups of a Formate Dehydrogenase-like Au Nanozyme to Engineer Multienzymatic Activities. ACS NANO 2024; 18:24162-24172. [PMID: 39162692 DOI: 10.1021/acsnano.4c05516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Although the past decade has witnessed a rapid development of oxidoreductase-mimicking nanozymes, the mimicry of cofactors that play key roles in mediating electron and proton transfer remains limited. This study explores how surface Au-H species conjugated to Au nanoparticles (NPs) that imitate formate dehydrogenase (FDH) can serve as cofactors, analogous to NADH in natural enzymes, offering diverse possibilities for FDH-mimicking Au nanozymes to mimic various enzymes. Once O2 is present, Au-H species assist Au NPs to complete the on-demand H2O2 generation for cascade reactions. Alternatively, when oxidizing organic molecules are introduced as substrates, Au-H species confer nitro reductase- and aldehyde reductase-like activities on Au NPs under anaerobic conditions. Furthermore, similar to the dehydrogenase-NADH complex, Au NPs possessing Au-H species are gifted with esterase-like activity for ester hydrolysis. By revealing that Au-H species are prosthetic groups for FDH-mimicking Au nanozymes, this work may inspire explorations into future self-generated cofactor mimics for nanozymes, thereby circumventing the need for exogenous cofactors.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Wenlong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Jinsong Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
3
|
Zheng Z, Liu H, Luo X, Liu R, Joe AD, Li H, Sun H, Lin Y, Li Y, Wang Y. Comparative transcriptome analysis provides insights into the resistance regulation mechanism and inhibitory effect of fungicide phenamacril in Fusarium asiaticum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105848. [PMID: 38685210 DOI: 10.1016/j.pestbp.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024]
Abstract
Fusarium asiaticum is a destructive phytopathogenic fungus that causes Fusarium head blight of wheat (FHB), leading to serious yield and economic losses to cereal crops worldwide. Our previous studies indicated that target-site mutations (K216R/E, S217P/L, or E420K/G/D) of Type I myosin FaMyo5 conferred high resistance to phenamacril. Here, we first constructed one sensitive strain H1S and three point mutation resistant strains HA, HC and H1R. Then we conducted comparative transcriptome analysis of these F. asiaticum strains after 1 and 10 μg·mL-1 phenamacril treatment. Results indicated that 2135 genes were differentially expressed (DEGs) among the sensitive and resistant strains. The DEGs encoding ammonium transporter MEP1/MEP2, nitrate reductase, copper amine oxidase 1, 4-aminobutyrate aminotransferase, amino-acid permease inda1, succinate-semialdehyde dehydrogenase, 2, 3-dihydroxybenzoic acid decarboxylase, etc., were significantly up-regulated in all the phenamacril-resistant strains. Compared to the control group, a total of 1778 and 2097 DEGs were identified in these strains after 1 and 10 μg·mL-1 phenamacril treatment, respectively. These DEGs involved in 4-aminobutyrate aminotransferase, chitin synthase 1, multiprotein-bridging factor 1, transcriptional regulatory protein pro-1, amino-acid permease inda1, ATP-dependent RNA helicase DED1, acetyl-coenzyme A synthetase, sarcoplasmic/endoplasmic reticulum calcium ATPase 2, etc., showed significantly down-regulated expression in phenamacril-sensitive strain but not in resistant strains after phenamacril treatment. In addition, cyanide hydratase, mating-type protein MAT-1, putative purine nucleoside permease, plasma membrane protein yro2, etc., showed significantly co-down-regulated expression in all the strains after phenamacril treatment. Taken together, This study provides deep insights into the resistance regulation mechanism and the inhibitory effect of fungicide phenamacril and these new annotated proteins or enzymes are worth for the discovery of new fungicide targets.
Collapse
Affiliation(s)
- Zhitian Zheng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Huaqi Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiao Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Runze Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Alexander Dumbi Joe
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Haolin Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjng 210014, China
| | - Yanling Lin
- Jiangsu GOOD HARVEST-WEIEN Agrochemical Co., Ltd, Beijing 101318, China
| | - Yanzhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yunpeng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
4
|
Xue Y, Ji X, Li Z, Ma F, Jiang J, Huang Y. NADH-dependent formate dehydrogenase mutants for efficient carbon dioxide fixation. BIORESOURCE TECHNOLOGY 2024; 393:130027. [PMID: 37977496 DOI: 10.1016/j.biortech.2023.130027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Bioconversion of CO2 to high-valuable products is a globally pursued sustainable technology for carbon neutrality. However, low CO2 activation with formate dehydrogenase (FDH) remains a major challenge for further upcycling due to the poor CO2 affinity, reduction activity and stability of currently used FDHs. Here, we present two recombined mutants, ΔFDHPa48 and ΔFDHPa4814, which exhibit high CO2 reduction activity and antioxidative activity. Compared to FDHPa, the reduction activity of ΔFDHPa48 was increased up to 743 % and the yield in the reduction of CO2 to methanol was increased by 3.16-fold. Molecular dynamics identified that increasing the width of the substrate pocket of ΔFDHPa48 could improve the enzyme reduction activity. Meanwhile, the enhanced rigidity of C-terminal residues effectively protected the active center. These results fundamentally advanced our understanding of the CO2 activation process and efficient FDH for enzymatic CO2 activation and conversion.
Collapse
Affiliation(s)
- Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Langfang Technological Centre of Green Industry, Hebei 065001, China
| | - Zhuang Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Ma
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Jiangsu 215163, China
| | - Jingjie Jiang
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Jiangsu 215163, China
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Langfang Technological Centre of Green Industry, Hebei 065001, China.
| |
Collapse
|
5
|
Villa R, Nieto S, Donaire A, Lozano P. Direct Biocatalytic Processes for CO 2 Capture as a Green Tool to Produce Value-Added Chemicals. Molecules 2023; 28:5520. [PMID: 37513391 PMCID: PMC10383722 DOI: 10.3390/molecules28145520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
6
|
Zhang A, Zhuang X, Liu J, Huang J, Lin L, Tang Y, Zhao S, Li R, Wang B, Fang B, Hong W. Catalytic cycle of formate dehydrogenase captured by single-molecule conductance. Nat Catal 2023. [DOI: 10.1038/s41929-023-00928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Tülek A, Günay E, Servili B, Eşsiz Ş, Binay B, Yildirim D. Sustainable production of formic acid from CO2 by a novel immobilized mutant formate dehydrogenase. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Enhanced thermostability of formate dehydrogenase via semi-rational design. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
González PJ, Rivas MG, Ferroni FM, Rizzi AC, Brondino CD. Electron transfer pathways and spin–spin interactions in Mo- and Cu-containing oxidoreductases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Arias-Cartin R, Uzel A, Seduk F, Gerbaud G, Pierrel F, Broc M, Lebrun R, Guigliarelli B, Magalon A, Grimaldi S, Walburger A. Identification and characterization of a non-canonical menaquinone-linked formate dehydrogenase. J Biol Chem 2021; 298:101384. [PMID: 34748728 PMCID: PMC8808070 DOI: 10.1016/j.jbc.2021.101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/25/2022] Open
Abstract
The Molybdenum/Tungsten-bispyranopterin guanine dinucleotides (Mo/W-bisPGD) family of Formate Dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting owing to their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates employed by partner subunits interacting with the catalytic hub. Here, we unveiled two non-canonical FDHs in Bacillus subtilis which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the ForC catalytic subunit interacts with an unprecedented partner subunit, ForE, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The ForE essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic Mo/bisPGD cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a non-canonical FDH, which differs in terms of architecture, amino acid conservation around the Mo cofactor, and reactivity.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France; Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Alexandre Uzel
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Fabien Pierrel
- Grenoble Alpes Université, CNRS, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Marianne Broc
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Régine Lebrun
- Aix Marseille Université, CNRS, Plateforme Protéomique de l'IMM, IM2B Marseille Protéomique (MaP), 13009 Marseille, France
| | - Bruno Guigliarelli
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Stéphane Grimaldi
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France.
| |
Collapse
|
11
|
Koçdemir K, Şen F, Wedajo YA, Bilgici MÇ, Bayram M, Selçuk İ, Yılmazer B, Çakar MM, Aslan ES, Binay B. Investigation new positions for catalytic activity of Chaetomium thermophilum and Ceriporiopsis subvermispora formate dehydrogenases. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1863951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Kübra Koçdemir
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fatma Şen
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Yasin Adem Wedajo
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | | | - Mustafa Bayram
- Department of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - İlke Selçuk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Berin Yılmazer
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Elif Sibel Aslan
- Department of Molecular Biology and Genetics, Biruni University, Topkapı, İstanbul, Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|