1
|
Lopez SG, Samwald S, Jones S, Faulkner C. On the pixel selection criterion for the calculation of the Pearson's correlation coefficient in fluorescence microscopy. J Microsc 2025; 297:304-315. [PMID: 38349020 PMCID: PMC11808421 DOI: 10.1111/jmi.13273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/11/2025]
Abstract
Colocalisation microscopy analysis provides an intuitive and straightforward way of determining if two biomolecules occupy the same diffraction-limited volume. A popular colocalisation coefficient, the Pearson's correlation coefficient (PCC), can be calculated using different pixel selection criteria: PCCALL includes all image pixels, PCCOR only pixels exceeding the intensity thresholds for either one of the detection channels, and PCCAND only pixels exceeding the intensity thresholds for both detection channels. Our results show that PCCALL depends on the foreground to background ratio, producing values influenced by factors unrelated to biomolecular association. PCCAND focuses on areas with the highest intensities in both channels, which allows it to detect low levels of colocalisation, but makes it inappropriate for evaluating spatial cooccurrence between the signals. PCCOR produces values influenced both by signal proportionality and spatial cooccurrence but can sometimes overemphasise the lack of the latter. Overall, PCCAND excels at detecting low levels of colocalisation, PCCOR provides a balanced quantification of signal proportionality and spatial coincidence, and PCCALL risks misinterpretation yet avoids segmentation challenges. Awareness of their distinct properties should inform their appropriate application with the aim of accurately representing the underlying biology.
Collapse
Affiliation(s)
- Sergio G. Lopez
- Cell and Developmental BiologyThe John Innes CentreNorwich Research ParkNorwichUK
| | - Sebastian Samwald
- Cell and Developmental BiologyThe John Innes CentreNorwich Research ParkNorwichUK
| | - Sally Jones
- Cell and Developmental BiologyThe John Innes CentreNorwich Research ParkNorwichUK
| | - Christine Faulkner
- Cell and Developmental BiologyThe John Innes CentreNorwich Research ParkNorwichUK
| |
Collapse
|
2
|
Guo Y, Li Y, Su P, Yan M, Wang M, Li S, Xiang W, Chen L, Dong W, Zhou Z, Zhou J. Tumor microtubes: A new potential therapeutic target for high-grade gliomas. J Neuropathol Exp Neurol 2025; 84:93-103. [PMID: 39560360 DOI: 10.1093/jnen/nlae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
High-grade infiltrating gliomas are highly aggressive and fatal brain tumors that present significant challenges for research and treatment due to their complex microenvironment and tissue structure. Recent discovery of tumor microtubes (TMs) has provided new insights into how high-grade gliomas develop in the brain and resist treatment. TMs are unique, ultra-long, and highly functional membrane protrusions that form multicellular networks and play crucial roles in glioma invasiveness, drug resistance, recurrence, and heterogeneity. This review focuses on the different roles that TMs play in glioma cell communication, material transport, and tumor cell behavior. Specifically, non-connecting TMs primarily promote glioma invasiveness, likely related to their role in enhancing cell motility. On the other hand, interconnecting TMs form functional and communication networks by connecting with surrounding astrocytes and neurons, thereby promoting glioma malignancy. We summarize the factors that influence the formation of TMs in gliomas and current strategies targeting TMs. As the understanding of TMs advances, we are closer to uncovering whether they might be the long-sought Achilles' heel of treatment-resistant gliomas. By delving deeper into TMs research, we hope to develop more effective therapeutic strategies for patients with malignant gliomas.
Collapse
Affiliation(s)
- Yunzhu Guo
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yangxin Li
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Peng Su
- Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Min Yan
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Wei Dong
- Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
3
|
Langella A, Gadau SD, Serra E, Bebbere D, Ledda S. Microtubular Assessment of C6 Rat Glioma Cell Spheroids Developed in Transparent Liquid Marbles or Hanging Drops. BIOLOGY 2022; 11:biology11040492. [PMID: 35453692 PMCID: PMC9031767 DOI: 10.3390/biology11040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma is a brain tumour frequently used as an experimental model to exploit innovative therapeutic approaches due to its high lethality and refractoriness to therapies. Part of these innovative anticancer therapies address cytoskeletal microtubules (MTs) since specific tubulin post-translational modifications (PTMs) are considered markers of tumour plasticity. In vitro studies, which traditionally employ two-dimensional (2D) culture systems, are now being replaced by three-dimensional (3D) systems that more closely mimic in vivo physiological conditions and allow a better understanding of the signalling between cells. In this work, we compared 2 liquid base 3D methods for the generation of spheroids from C6 rat glioma cells (RGCs) using 30 µL of liquid marble (LM) or the hanging drops (HDs), which contained 2 different cell numbers (5000 or 15,000). After 24 or 48 h of in vitro culture (IVC), the morphology of the spheroids was observed and the behaviour of the two main tubulin PTMs, tyrosinated α-tubulin (Tyr-T) and acetylated α-tubulin (Ac-T), was evaluated by fluorescence and Western blot (WB). RGCs spontaneously formed spherical agglomerates more rapidly in the LM than in the HD system. Cell density influenced the size of the spheroids, which reached a larger size (> of 300 µm Ø), with 15,000 cells compared to 5000 cells (150 µm Ø). Moreover, an increase in Tyr-T and Ac-T was observed in both the HD and LM system from 24 to 48 h, with the highest values shown in the 48 h/LM spheroids of 5000 cells (p < 0.05). In conclusion, by comparing the morphology and microtubular architecture of spheroids from C6 rat glioma cells developed by LM or HD methodology, our findings demonstrate that the use of a fumed silica microbioreactor boosts the induction and maintenance of a high plasticity state in glioma cells. RGCs cultured in LM express levels of tubulin PTMs that can be used to evaluate the efficacy of new anticancer therapies.
Collapse
|
4
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|