1
|
Azizoglu U, Argentel-Martínez L, Peñuelas-Rubio O, Herrera-Sepúlveda A, Ibal JC, Sharafi R, Salehi Jouzani G, Ortiz A, Vaca J, Sansinenea E. Natural Products Produced by the Species of Bacillus cereus Group: Recent Updates. J Basic Microbiol 2025; 65:e2400666. [PMID: 39569545 DOI: 10.1002/jobm.202400666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
Bacillus cereus group produces diverse antimicrobial compounds through different metabolic pathways, including amino acid-based compounds, sugar derivatives, volatile and miscellaneous compounds. These antimicrobial compounds exhibit antibacterial and antifungal activities against various plant pathogens, promoting plant growth and enhancing tolerance to abiotic stresses. They also exhibit nematicidal activities against plant nematodes and antagonistic effects against pathogens in aquatic animals, promoting growth and inducing immune responses. Moreover, B. cereus group bacteria play a significant role in bioremediation by breaking down or neutralizing environmental pollutants, such as plastics, petroleum products, heavy metals, and insecticides. They produce enzymes like laccases, lipases, proteases, and various oxidases, contributing to the degradation of these pollutants. In the food industry, they can cause food poisoning due to their production of enterotoxins. However, they are also utilized in various industrial applications, such as producing environmentally friendly bio-based materials, biofertilizers, and nanoparticles. Notably, B. cereus transforms selenite into selenium nanoparticles, which have health benefits, including cancer prevention. In summary, B. cereus group bacteria have diverse applications in agriculture, bioremediation, industry, and medicine, contributing to sustainable and eco-friendly solutions across multiple fields. In this review, we have revised B. cereus group and the characteristics of every species; we have also highlighted the more important compounds secreted by the species of B. cereus group and the applications of these compounds. The aim is to explain the available secondary metabolites to classify the species from this group, increasing the knowledge about taxonomy of this group.
Collapse
Affiliation(s)
- Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye
| | | | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, Bácum, Sonora, Mexico
| | | | - Jerald Conrad Ibal
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - Reza Sharafi
- National Center for Genetic Resource of Agriculture and Natural Resources, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jessica Vaca
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| |
Collapse
|
2
|
Ngo HPT, Nguyen DQ, Park H, Park YS, Kwak K, Kim T, Lee JH, Cho KS, Kang LW. Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes. BMB Rep 2022; 55:439-446. [PMID: 36104257 PMCID: PMC9537024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 03/08/2024] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are ubiquitous, catalyzing various biochemical reactions of approximately 4% of all classified enzymatic activities. They transform amines and amino acids into important metabolites or signaling molecules and are important drug targets in many diseases. In the crystal structures of PLP-dependent enzymes, organic cofactor PLP showed diverse conformations depending on the catalytic step. The conformational change of PLP is essential in the catalytic mechanism. In the study, we review the sophisticated catalytic mechanism of PLP, especially in transaldimination reactions. Most drugs targeting PLP-dependent enzymes make a covalent bond to PLP with the transaldimination reaction. A detailed understanding of organic cofactor PLP will help develop a new drug against PLP-dependent enzymes. [BMB Reports 2022; 55(9): 439-446].
Collapse
Affiliation(s)
- Ho-Phuong-Thuy Ngo
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Diem Quynh Nguyen
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yoon Sik Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Taejoon Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|