1
|
Shen H, Hao M, Yu S. A new β-amylase detection strategy based on encapsulated enzyme in magnetic layered double hydroxide with high sensitivity and simplified workflow. Talanta 2025; 292:127940. [PMID: 40090254 DOI: 10.1016/j.talanta.2025.127940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
β-Amylase (BMY) is a linchpin in food production and the pharmaceutical industry because the enzyme efficiently controls the ratio of diverse saccharides in fermentation and the manufacture of high-quality maltose. However, existing BMY detection tactics suffer from inadequate selectivity/sensitivity and cumbersome operation and do not meet the needs of precise quantification. Consequently, there is an urgent need to develop an ultrasensitive sensing platform to achieve precise BMY analysis with a low detection limit and simpler workflow. In this work, we establish an encapsulated-enzyme-based BMY biosensing platform in which α-glucosidase is embedded in magnetic layered double hydroxide using a self-sacrificing template. The encapsulated enzyme has increased activity, robustness, and recyclability and was utilized for BMY detection via a cascade chromatic process. We found a detection limit for the quantification of BMY activity of 2.67 U/L with a broad range (5-400 U/L), fast response speed (10 min), and satisfactory specificity. We applied the biosensing platform to liquor starters to verify the capability of the assay in complicated fermentation samples. The proposed platform holds great promise as an efficient and simple method for enzymatic bioactivity monitoring in food manufacturing, biopharmaceutical processing, and clinical laboratory tests.
Collapse
Affiliation(s)
- Hao Shen
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China.
| | - Mengdi Hao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Berndsen CE, Storm AR, Sardelli AM, Hossain SR, Clermont KR, McFather LM, Connor MA, Monroe JD. The Pseudoenzyme β-Amylase9 From Arabidopsis Activates α-Amylase3: A Possible Mechanism to Promote Stress-Induced Starch Degradation. Proteins 2025; 93:1189-1201. [PMID: 39846389 PMCID: PMC12046210 DOI: 10.1002/prot.26803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated. Plants lacking one of these catalytically inactive β-amylases, BAM9, have enhanced starch accumulation when combined with mutations in BAM1 and BAM3, the primary starch degrading BAMs in response to stress and at night, respectively. BAM9 has been reported to be transcriptionally induced by stress although the mechanism for BAM9 function is unclear. From yeast two-hybrid experiments, we identified the plastid-localized AMY3 as a potential interaction partner for BAM9. We found that BAM9 interacted with AMY3 in vitro and that BAM9 enhances AMY3 activity about three-fold. Modeling of the AMY3-BAM9 complex predicted a previously undescribed alpha-alpha hairpin in AMY3 that could serve as a potential interaction site. Additionally, AMY3 lacking the alpha-alpha hairpin is unaffected by BAM9. Structural analysis of AMY3 showed that it can form a homodimer in solution and that BAM9 appears to replace one of the AMY3 monomers to form a heterodimer. The presence of both BAM9 and AMY3 in many vascular plant lineages, along with model-based evidence that they heterodimerize, suggests that the interaction is conserved. Collectively these data suggest that BAM9 is a pseudoamylase that activates AMY3 in response to cellular stress, possibly facilitating stress recovery.
Collapse
Affiliation(s)
| | - Amanda R. Storm
- Department of BiologyWestern Carolina UniversityCullowheeNorth CarolinaUSA
- Department of BiologyJames Madison UniversityHarrisonburgVirginiaUSA
| | - Angelina M. Sardelli
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
| | - Sheikh R. Hossain
- Department of BiologyJames Madison UniversityHarrisonburgVirginiaUSA
| | | | - Luke M. McFather
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
| | - Mafe A. Connor
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
| | - Jonathan D. Monroe
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
- Department of BiologyJames Madison UniversityHarrisonburgVirginiaUSA
| |
Collapse
|
3
|
Liu J, Wang X, Guan Z, Wu M, Wang X, Fan R, Zhang F, Yan J, Liu Y, Zhang D, Yin P, Yan J. The LIKE SEX FOUR 1-malate dehydrogenase complex functions as a scaffold to recruit β-amylase to promote starch degradation. THE PLANT CELL 2023; 36:194-212. [PMID: 37804098 PMCID: PMC10734626 DOI: 10.1093/plcell/koad259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including β-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit β-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.
Collapse
Affiliation(s)
- Jian Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecui Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Menglong Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyue Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Fan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjun Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Zhang H, Chen G, Xu H, Jing S, Jiang Y, Liu Z, Zhang H, Wang F, Hu X, Zhu Y. Transcriptome Analysis of Rice Embryo and Endosperm during Seed Germination. Int J Mol Sci 2023; 24:ijms24108710. [PMID: 37240056 DOI: 10.3390/ijms24108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Seed germination is a complex, multistage developmental process that is an important step in plant development. In this study, RNA-Seq was conducted in the embryo and endosperm of unshelled germinating rice seeds. A total of 14,391 differentially expressed genes (DEGs) were identified between the dry seeds and the germinating seeds. Of these DEGs, 7109 were identified in both the embryo and endosperm, 3953 were embryo specific, and 3329 were endosperm specific. The embryo-specific DEGs were enriched in the plant-hormone signal-transduction pathway, while the endosperm-specific DEGs were enriched in phenylalanine, tyrosine, and tryptophan biosynthesis. We categorized these DEGs into early-, intermediate-, and late-stage genes, as well as consistently responsive genes, which can be enriched in various pathways related to seed germination. Transcription-factor (TF) analysis showed that 643 TFs from 48 families were differentially expressed during seed germination. Moreover, 12 unfolded protein response (UPR) pathway genes were induced by seed germination, and the knockout of OsBiP2 resulted in reduced germination rates compared to the wild type. This study enhances our understanding of gene responses in the embryo and endosperm during seed germination and provides insight into the effects of UPR on seed germination in rice.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Heng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sasa Jing
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yingying Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ziwen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fulin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Li H, He X, Gao Y, Liu W, Song J, Zhang J. Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:1290. [PMID: 36986978 PMCID: PMC10058427 DOI: 10.3390/plants12061290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Brassinosteroids are a recently discovered group of substances that promote plant growth and productivity. Photosynthesis, which is vital for plant growth and high productivity, is strongly influenced by brassinosteroid signaling. However, the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize remains obscure. Here, we performed integrated transcriptome, proteome, and phosphoproteomic analyses to identify the key photosynthesis pathway that responds to brassinosteroid signaling. Transcriptome analysis suggested that photosynthesis antenna proteins and carotenoid biosynthesis, plant hormone signal transduction, and MAPK signaling in CK VS EBR and CK VS Brz were significantly enriched in the list of differentially expressed genes upon brassinosteroids treatment. Consistently, proteome and phosphoproteomic analyses indicated that photosynthesis antenna and photosynthesis proteins were significantly enriched in the list of differentially expressed proteins. Thus, transcriptome, proteome, and phosphoproteome analyses showed that major genes and proteins related to photosynthesis antenna proteins were upregulated by brassinosteroids treatment in a dose-dependent manner. Meanwhile, 42 and 186 transcription factor (TF) responses to brassinosteroid signals in maize leaves were identified in the CK VS EBR and CK VS Brz groups, respectively. Our study provides valuable information for a better understanding of the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize.
Collapse
Affiliation(s)
- Hui Li
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Xuewu He
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yuanfen Gao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Wenjuan Liu
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Jun Song
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|