1
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Boltje DB, Skoupý R, Taisne C, Evers WH, Jakobi AJ, Hoogenboom JP. Thickness- and quality-controlled fabrication of fluorescence-targeted frozen-hydrated lamellae. CELL REPORTS METHODS 2025; 5:101004. [PMID: 40132541 PMCID: PMC12049727 DOI: 10.1016/j.crmeth.2025.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Cryogenic focused ion beam (FIB) milling is essential for fabricating thin lamella-shaped samples out of frozen-hydrated cells for high-resolution structure determination. Structural information can only be resolved at high resolution if the lamella thickness is between 100 and 200 nm. While the lamella fabrication workflow has improved significantly since its conception, quantitative, live feedback on lamella thickness, quality, and biological target inclusion remains lacking. Using coincident light microscopy integrated into the FIB scanning electron microscope (FIB-SEM), we present three strategies that enable accurate, live control during lamella fabrication. First, we combine four-dimensional (4D) STEM with fluorescence microscopy (FM) targeting to determine lamella thickness. Second, with reflected light microscopy (RLM), we screen target sites for ice contamination and monitor lamella thickness and protective Pt coating integrity during FIB milling. Third, we exploit thin-film interference for fine-grained feedback on thickness uniformity below 500 nm. Finally, we present a fluorescence-targeted, quality-controlled workflow for frozen-hydrated lamellae, benchmarked with excellent agreement with energy-filtered transmission electron microscopy (EFTEM) measurements and tomograms from electron cryotomography.
Collapse
Affiliation(s)
- Daan B Boltje
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands; Delmic B.V., Delft, the Netherlands
| | - Radim Skoupý
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Clémence Taisne
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Wiel H Evers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Jacob P Hoogenboom
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
3
|
Henderikx RJM, Schotman MJG, Shahzad S, Fromm SA, Mann D, Hennies J, Heidler TV, Ashtiani D, Hagen WJH, Jeurissen RJM, Mattei S, Peters PJ, Sachse C, Beulen BWAMM. Ice thickness control and measurement in the VitroJet for time-efficient single particle structure determination. J Struct Biol 2024; 216:108139. [PMID: 39433138 DOI: 10.1016/j.jsb.2024.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Embedding biomolecules in vitreous ice of optimal thickness is critical for structure determination by cryo-electron microscopy. Ice thickness assessment and selection of suitable holes for data collection are currently part of time-consuming preparatory routines performed on expensive electron microscopes. To address this challenge, a routine has been developed to measure ice thickness during sample preparation using an optical camera integrated in the VitroJet. This method allows to estimate the ice thickness with an error below ±20 nm for ice layers in the range of 0-70 nm. Additionally, we characterized the influence of pin printing parameters and found that the median ice thickness can be reproduced with a standard deviation below ±11 nm for thicknesses up to 75 nm. Therefore, the ice thickness of buffer-suspended holes on an EM grid can be tuned and measured within the working range relevant for single particle cryo-EM. Single particle structures of apoferritin were determined at two distinct thicknesses of 30 nm and 70 nm. These reconstructions demonstrate the importance of ice thickness for time-efficient cryo-EM structure determination.
Collapse
Affiliation(s)
- Rene J M Henderikx
- CryoSol-World, Weert, the Netherlands; Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands.
| | | | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Simon A Fromm
- European Molecular Biology Laboratory, EMBL Imaging Centre, Heidelberg, Germany
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Julian Hennies
- European Molecular Biology Laboratory, EMBL Imaging Centre, Heidelberg, Germany
| | - Thomas V Heidler
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | - Wim J H Hagen
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Roger J M Jeurissen
- ACFD Consultancy, Heel, the Netherlands; Physics of Fluids group, University of Twente, Enschede, the Netherlands
| | - Simone Mattei
- European Molecular Biology Laboratory, EMBL Imaging Centre, Heidelberg, Germany; European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Peter J Peters
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Carsten Sachse
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany; Department of Biology, Heinrich-Heine-University, Düsseldorf
| | | |
Collapse
|
4
|
Henderikx RJM, Mann D, Domanska A, Dong J, Shahzad S, Lak B, Filopoulou A, Ludig D, Grininger M, Momoh J, Laanto E, Oksanen HM, Bisikalo K, Williams PA, Butcher SJ, Peters PJ, Beulen BWAMM. VitroJet: new features and case studies. Acta Crystallogr D Struct Biol 2024; 80:232-246. [PMID: 38488730 PMCID: PMC10994172 DOI: 10.1107/s2059798324001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.
Collapse
Affiliation(s)
- Rene J. M. Henderikx
- CryoSol-World, Weert, The Netherlands
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Aušra Domanska
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Jing Dong
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Behnam Lak
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Aikaterini Filopoulou
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Damian Ludig
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jeffrey Momoh
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Elina Laanto
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kyrylo Bisikalo
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Pamela A. Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Sarah J. Butcher
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
5
|
Last MGF, Voortman LM, Sharp TH. Building a super-resolution fluorescence cryomicroscope. Methods Cell Biol 2024; 187:205-222. [PMID: 38705625 DOI: 10.1016/bs.mcb.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Correlated super-resolution fluorescence microscopy and cryo-electron microscopy enables imaging with both high labeling specificity and high resolution. Naturally, combining two sophisticated imaging techniques within one workflow also introduces new requirements on hardware, such as the need for a super-resolution fluorescence capable microscope that can be used to image cryogenic samples. In this chapter, we describe the design and use of the "cryoscope"; a microscope designed for single-molecule localization microscopy (SMLM) of cryoEM samples that fits right into established cryoEM workflows. We demonstrate the results that can be achieved with our microscope by imaging fluorescently labeled vimentin, an intermediate filament, within U2OS cells grown on EM grids, and we provide detailed 3d models that encompass the entire design of the microscope.
Collapse
Affiliation(s)
- Mart G F Last
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands; School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
6
|
Last MGF, Voortman LM, Sharp TH. Imaging intracellular components in situ using super-resolution cryo-correlative light and electron microscopy. Methods Cell Biol 2024; 187:223-248. [PMID: 38705626 DOI: 10.1016/bs.mcb.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Super-resolution cryo-correlative light and electron microscopy (SRcryoCLEM) is emerging as a powerful method to enable targeted in situ structural studies of biological samples. By combining the high specificity and localization accuracy of single-molecule localization microscopy (cryoSMLM) with the high resolution of cryo-electron tomography (cryoET), this method enables accurately targeted data acquisition and the observation and identification of biomolecules within their natural cellular context. Despite its potential, the adaptation of SRcryoCLEM has been hindered by the need for specialized equipment and expertise. In this chapter, we outline a workflow for cryoSMLM and cryoET-based SRcryoCLEM, and we demonstrate that, given the right tools, it is possible to incorporate cryoSMLM into an established cryoET workflow. Using Vimentin as an exemplary target of interest, we demonstrate all stages of an SRcryoCLEM experiment: performing cryoSMLM, targeting cryoET acquisition based on single-molecule localization maps, and correlation of cryoSMLM and cryoET datasets using scNodes, a software package dedicated to SRcryoCLEM. By showing how SRcryoCLEM enables the imaging of specific intracellular components in situ, we hope to facilitate adoption of the technique within the field of cryoEM.
Collapse
Affiliation(s)
- Mart G F Last
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands; School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
7
|
Valdebenito S, Ajasin D, Prideaux B, Eugenin EA. Correlative Imaging to Detect Rare HIV Reservoirs and Associated Damage in Tissues. Methods Mol Biol 2024; 2807:93-110. [PMID: 38743223 DOI: 10.1007/978-1-0716-3862-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Correlative light-electron microscopy (CLEM) has evolved in the last decades, especially after significant developments in sample preparation, imaging acquisition, software, spatial resolution, and equipment, including confocal, live-cell, super-resolution, and electron microscopy (scanning, transmission, focused ion beam, and cryo-electron microscopy). However, the recent evolution of different laser-related techniques, such as mass spectrometry imaging (MSI) and laser capture microdissection, could further expand spatial imaging capabilities into high-resolution OMIC approaches such as proteomic, lipidomics, small molecule, and drug discovery. Here, we will describe a protocol to integrate the detection of rare viral reservoirs with imaging mass spectrometry.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - David Ajasin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brendan Prideaux
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|