1
|
Hyun J, Hsieh LTH, Ayala R, Chang W, Wolf M. Methods to Study Poxvirus Structures by Cryo-EM Imaging Modalities. Methods Mol Biol 2025; 2860:191-218. [PMID: 39621269 DOI: 10.1007/978-1-0716-4160-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Poxviruses are double-stranded DNA viruses that represent the largest known highly pathogenic viruses infecting humans. They undergo dramatic morphological changes during their maturation process, resulting in structural differences between each virion, and their surface is decorated with more than a dozen randomly distributed surface proteins that facilitate viral entry. These are the main reasons poxviruses have eluded high-resolution structure determination. Over the last three decades, cryo-EM has developed into a mature technology that can increasingly overcome such problems of structural heterogeneity through advances in microscope technology and image processing algorithms. Here, we discuss the essential current modalities in cryo-EM, which promise to solve the structure of poxviruses in parts and as entire virions at near-atomic resolution. With a focus on cryo modalities, we provide an overview of methods, including volume microscopy by plasma ion beam milling, focused ion beam lamella preparation, subtomogram averaging, and single particle averaging. Protocols for poxvirus propagation, purification, and imaging by cryo-EM are presented. This chapter is aimed at experts and nonexpert researchers to help facilitate entry into the structural biology of this critical field in virology.
Collapse
Affiliation(s)
- Jaekyung Hyun
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea.
| | | | - Rafael Ayala
- Okinawa Institute of Science and Technology Graduate University (OIST), Molecular Cryo-Electron Microscopy Unit, Kunigami, Okinawa, Japan
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan.
| | - Matthias Wolf
- Okinawa Institute of Science and Technology Graduate University (OIST), Molecular Cryo-Electron Microscopy Unit, Kunigami, Okinawa, Japan.
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan.
| |
Collapse
|
2
|
Schiøtz OH, Klumpe S, Plitzko JM, Kaiser CJO. Cryo-electron tomography: en route to the molecular anatomy of organisms and tissues. Biochem Soc Trans 2024; 52:2415-2425. [PMID: 39641594 PMCID: PMC11668301 DOI: 10.1042/bst20240173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Cryo-electron tomography (cryo-ET) has become a key technique for obtaining structures of macromolecular complexes in their native environment, assessing their local organization and describing the molecular sociology of the cell. While microorganisms and adherent mammalian cells are common targets for tomography studies, appropriate sample preparation and data acquisition strategies for larger cellular assemblies such as tissues, organoids or small model organisms have only recently become sufficiently practical to allow for in-depth structural characterization of such samples in situ. These advances include tailored lift-out approaches using focused ion beam (FIB) milling, and improved data acquisition schemes. Consequently, cryo-ET of FIB lamellae from large volume samples can complement ultrastructural analysis with another level of information: molecular anatomy. This review highlights the recent developments towards molecular anatomy studies using cryo-ET, and briefly outlines what can be expected in the near future.
Collapse
Affiliation(s)
- Oda Helene Schiøtz
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sven Klumpe
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Juergen M. Plitzko
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christoph J. O. Kaiser
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
Pierson JA, Yang JE, Wright ER. Recent advances in correlative cryo-light and electron microscopy. Curr Opin Struct Biol 2024; 89:102934. [PMID: 39366119 PMCID: PMC11602379 DOI: 10.1016/j.sbi.2024.102934] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024]
Abstract
Correlative light and electron microscopy (CLEM) pipelines serve to integrate the imaging modalities of fluorescence light microscopy (FLM) and cryogenic electron microscopy (cryo-EM) to produce contextually relevant high-resolution structural snapshots of biological systems. Innovations in sample preparation, instrumentation, imaging, and data processing have advanced the field of cryo-EM. This review focuses on prior work and recent developments in the field of cryo- EM that support further integration of technologies for correlative microscopy workflows.
Collapse
Affiliation(s)
- Joshua A Pierson
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
4
|
Hutchings J, Villa E. Expanding insights from in situ cryo-EM. Curr Opin Struct Biol 2024; 88:102885. [PMID: 38996624 DOI: 10.1016/j.sbi.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
The combination of cryo-electron tomography and subtomogram analysis affords 3D high-resolution views of biological macromolecules in their native cellular environment, or in situ. Streamlined methods for acquiring and processing these data are advancing attainable resolutions into the realm of drug discovery. Yet regardless of resolution, structure prediction driven by artificial intelligence (AI) combined with subtomogram analysis is becoming powerful in understanding macromolecular assemblies. Automated and AI-assisted data mining is increasingly necessary to cope with the growing wealth of tomography data and to maximize the information obtained from them. Leveraging developments from AI and single-particle analysis could be essential in fulfilling the potential of in situ cryo-EM. Here, we highlight new developments for in situ cryo-EM and the emerging potential for AI in this process.
Collapse
Affiliation(s)
- Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Eisenstein F, Fukuda Y, Danev R. Smart parallel automated cryo-electron tomography. Nat Methods 2024; 21:1612-1615. [PMID: 39117874 DOI: 10.1038/s41592-024-02373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/20/2024] [Indexed: 08/10/2024]
Abstract
In situ cryo-electron tomography enables investigation of macromolecules in their native cellular environment. Samples have become more readily available owing to recent software and hardware advancements. Data collection, however, still requires an experienced operator and appreciable microscope time to carefully select targets for high-throughput tilt series acquisition. Here, we developed smart parallel automated cryo-electron tomography (SPACEtomo), a workflow using machine learning approaches to fully automate the entire cryo-electron tomography process, including lamella detection, biological feature segmentation, target selection and parallel tilt series acquisition, all without the need for human intervention. This degree of automation will be essential for obtaining statistically relevant datasets and high-resolution structures of macromolecules in their native context.
Collapse
Affiliation(s)
- Fabian Eisenstein
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Yoshiyuki Fukuda
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Noble AJ, de Marco A. Cryo-focused ion beam for in situ structural biology: State of the art, challenges, and perspectives. Curr Opin Struct Biol 2024; 87:102864. [PMID: 38901373 DOI: 10.1016/j.sbi.2024.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Cryogenic-focused ion beam (cryo-FIB) instruments became essential for high-resolution imaging in cryo-preserved cells and tissues. Cryo-FIBs use accelerated ions to thin samples that would otherwise be too thick for cryo-electron microscopy (cryo-EM). This allows visualizing cellular ultrastructures in near-native frozen hydrated states. This review describes the current state-of-the-art capabilities of cryo-FIB technology and its applications in structural cell and tissue biology. We discuss recent advances in instrumentation, imaging modalities, automation, sample preparation protocols, and targeting techniques. We outline remaining challenges and future directions to make cryo-FIB more precise, enable higher throughput, and be widely accessible. Further improvements in targeting, efficiency, robust sample preparation, emerging ion sources, automation, and downstream electron tomography have the potential to reveal intricate molecular architectures across length scales inside cells and tissues. Cryo-FIB is poised to become an indispensable tool for preparing native biological systems in situ for high-resolution 3D structural analysis.
Collapse
Affiliation(s)
- Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027, USA. https://twitter.com/alexjamesnoble
| | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027, USA.
| |
Collapse
|
7
|
Hale VL, Hooker J, Russo CJ, Löwe J. Honeycomb gold specimen supports enabling orthogonal focussed ion beam-milling of elongated cells for cryo-ET. J Struct Biol 2024; 216:108097. [PMID: 38772448 PMCID: PMC7616276 DOI: 10.1016/j.jsb.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Cryo-focussed ion beam (FIB)-milling is a powerful technique that opens up thick, cellular specimens to high-resolution structural analysis by electron cryotomography (cryo-ET). FIB-milled lamellae can be produced from cells on grids, or cut from thicker, high-pressure frozen specimens. However, these approaches can put geometrical constraints on the specimen that may be unhelpful, particularly when imaging structures within the cell that have a very defined orientation. For example, plunge frozen rod-shaped bacteria orient parallel to the plane of the grid, yet the Z-ring, a filamentous structure of the tubulin-like protein FtsZ and the key organiser of bacterial division, runs around the circumference of the cell such that it is perpendicular to the imaging plane. It is therefore difficult or impractical to image many complete rings with current technologies. To circumvent this problem, we have fabricated monolithic gold specimen supports with a regular array of cylindrical wells in a honeycomb geometry, which trap bacteria in a vertical orientation. These supports, which we call "honeycomb gold discs", replace standard EM grids and when combined with FIB-milling enable the production of lamellae containing cross-sections through cells. The resulting lamellae are more stable and resistant to breakage and charging than conventional lamellae. The design of the honeycomb discs can be modified according to need and so will also enable cryo-ET and cryo-EM imaging of other specimens in otherwise difficult to obtain orientations.
Collapse
Affiliation(s)
| | - James Hooker
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
8
|
McCafferty CL, Klumpe S, Amaro RE, Kukulski W, Collinson L, Engel BD. Integrating cellular electron microscopy with multimodal data to explore biology across space and time. Cell 2024; 187:563-584. [PMID: 38306982 DOI: 10.1016/j.cell.2024.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.
Collapse
Affiliation(s)
| | - Sven Klumpe
- Research Group CryoEM Technology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|