1
|
Kamiya S, Nakamori Y, Takasawa A, Takasawa K, Kyuno D, Ono Y, Magara K, Osanai M. Vitamin D metabolism in cancer: potential feasibility of vitamin D metabolism blocking therapy. Med Mol Morphol 2023; 56:85-93. [PMID: 36749415 DOI: 10.1007/s00795-023-00348-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
In this review, we discuss the possibility of the vitamin D metabolizing enzyme CYP24A1 being a therapeutic target for various tumors including breast, colorectal and prostate tumors. Given the pleiotropic cellular activity of vitamin D, its deficiency impairs its physiological function in target cells and results in various pathologies including cancer. In addition, accumulated data have shown that elevated expression of CYP24A1 promotes carcinogenesis in various cancer subtypes by decreasing the bioavailability of vitamin D metabolites. Thus, we propose the potential feasibility of vitamin D metabolism-blocking therapy in various types of human malignancies that express constitutive CYP24A1.
Collapse
Affiliation(s)
- Sakura Kamiya
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Yuna Nakamori
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan.,Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Daisuke Kyuno
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Kazufumi Magara
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, Sapporo, 060-0061, Japan.
| |
Collapse
|
2
|
Abstract
Signaling through the vitamin D receptor has been shown to be biologically active and important in a number of preclinical studies in prostate and other cancers. Epidemiologic data also indicate that vitamin D signaling may be important in the cause and prognosis of prostate and other cancers. These data indicate that perturbation of vitamin D signaling may be a target for the prevention and treatment of prostate cancer. Large studies of vitamin D supplementation will be required to determine whether these observations can be translated into prevention strategies. This paper reviews the available data in the use of vitamin D compounds in the treatment of prostate cancer. Clinical data are limited which support the use of vitamin D compounds in the management of men with prostate cancer. However, clinical trials guided by existing preclinical data are limited.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, USA
| | | |
Collapse
|
3
|
Trump DL. Calcitriol and cancer therapy: A missed opportunity. Bone Rep 2018; 9:110-119. [PMID: 30591928 PMCID: PMC6303233 DOI: 10.1016/j.bonr.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
The vitamin D receptor is expressed in most tissues of the body - and the cancers that arise from those tissues. The vitamin D signaling pathway is active in those tissues and cancers. This is at least consistent with the hypothesis that perturbing this signaling may have a favorable effect on the genesis and growth of cancers. Epidemiologic data indicate that vitamin D signaling may be important in the initiation and outcome of a number of types of cancer. Many studies have shown that calcitriol (1,25 dihydroxycholecalciferol) and other vitamin D compounds have antiproliferative, pro-apoptotic, anti-cell migration and antiangiogenic activity in a number of preclinical studies in many different cancer types. Unfortunately, the assessment of the activity of calcitriol or other vitamin D analogues in the treatment of cancer, as single agents or in combination with other anticancer agents has been stymied by the failure to adhere to commonly accepted principles of drug development and clinical trials conduct.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, United States of America
| |
Collapse
|
4
|
25-Hydroxyvitamin D 3 induces osteogenic differentiation of human mesenchymal stem cells. Sci Rep 2017; 7:42816. [PMID: 28211493 PMCID: PMC5314335 DOI: 10.1038/srep42816] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 01/09/2023] Open
Abstract
25-Hydroxyvitamin D3 [25(OH)D3] has recently been found to be an active hormone. Its biological actions are demonstrated in various cell types. 25(OH)D3 deficiency results in failure in bone formation and skeletal deformation. Here, we investigated the effect of 25(OH)D3 on osteogenic differentiation of human mesenchymal stem cells (hMSCs). We also studied the effect of 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3], a metabolite of 25(OH)D3. One of the vitamin D responsive genes, 25(OH)D3-24-hydroxylase (cytochrome P450 family 24 subfamily A member 1) mRNA expression is up-regulated by 25(OH)D3 at 250-500 nM and by 1α,25-(OH)2D3 at 1-10 nM. 25(OH)D3 and 1α,25-(OH)2D3 at a time-dependent manner alter cell morphology towards osteoblast-associated characteristics. The osteogenic markers, alkaline phosphatase, secreted phosphoprotein 1 (osteopontin), and bone gamma-carboxyglutamate protein (osteocalcin) are increased by 25(OH)D3 and 1α,25-(OH)2D3 in a dose-dependent manner. Finally, mineralisation is significantly increased by 25(OH)D3 but not by 1α,25-(OH)2D3. Moreover, we found that hMSCs express very low level of 25(OH)D3-1α-hydroxylase (cytochrome P450 family 27 subfamily B member 1), and there is no detectable 1α,25-(OH)2D3 product. Taken together, our findings provide evidence that 25(OH)D3 at 250-500 nM can induce osteogenic differentiation and that 25(OH)D3 has great potential for cell-based bone tissue engineering.
Collapse
|
5
|
Kim JS, Roberts JM, Bingman WE, Shao L, Wang J, Ittmann MM, Weigel NL. The prostate cancer TMPRSS2:ERG fusion synergizes with the vitamin D receptor (VDR) to induce CYP24A1 expression-limiting VDR signaling. Endocrinology 2014; 155:3262-73. [PMID: 24926821 PMCID: PMC5377584 DOI: 10.1210/en.2013-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A number of preclinical studies have shown that the activation of the vitamin D receptor (VDR) reduces prostate cancer (PCa) cell and tumor growth. The majority of human PCas express a transmembrane protease serine 2 (TMPRSS2):erythroblast transformation-specific (ETS) fusion gene, but most preclinical studies have been performed in PCa models lacking TMPRSS2:ETS in part due to the limited availability of model systems expressing endogenous TMPRSS2:ETS. The level of the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D), is controlled in part by VDR-dependent induction of cytochrome P450, family 24, subfamily 1, polypeptide1 (CYP24A1), which metabolizes 1,25D to an inactive form. Because ETS factors can cooperate with VDR to induce rat CYP24A1, we tested whether TMPRSS2:ETS would cause aberrant induction of human CYP24A1 limiting the activity of VDR. In TMPRSS2:ETS positive VCaP cells, depletion of TMPRSS2:ETS substantially reduced 1,25D-mediated CYP24A1 induction. Artificial expression of the type VI+72 TMPRSS2:ETS isoform in LNCaP cells synergized with 1,25D to greatly increase CYP24A1 expression. Thus, one of the early effects of TMPRSS2:ETS in prostate cells is likely a reduction in intracellular 1,25D, which may lead to increased proliferation. Next, we tested the net effect of VDR action in TMPRSS2:ETS containing PCa tumors in vivo. Unlike previous animal studies performed on PCa tumors lacking TMPRSS2:ETS, EB1089 (seocalcitol) (a less calcemic analog of 1,25D) did not inhibit the growth of TMPRSS2:ETS containing VCaP tumors in vivo, suggesting that the presence of TMPRSS2:ETS may limit the growth inhibitory actions of VDR. Our findings suggest that patients with TMPRSS2:ETS negative tumors may be more responsive to VDR-mediated growth inhibition and that TMPRSS2:ETS status should be considered in future clinical trials.
Collapse
Affiliation(s)
- Jung-Sun Kim
- Departments of Molecular and Cellular Biology (J.-S.K., J.M.R., W.E.B., N.L.W.) and Pathology and Immunology (L.S., J.W., M.M.I.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | |
Collapse
|
6
|
Tuohimaa P, Wang JH, Khan S, Kuuslahti M, Qian K, Manninen T, Auvinen P, Vihinen M, Lou YR. Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites. PLoS One 2013; 8:e75338. [PMID: 24116037 PMCID: PMC3792969 DOI: 10.1371/journal.pone.0075338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/12/2013] [Indexed: 01/08/2023] Open
Abstract
1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1−/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1−/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.
Collapse
Affiliation(s)
- Pentti Tuohimaa
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
- Department of Clinical Chemistry, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Jing-Huan Wang
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
- Tampere Graduate School in Biomedicine and Biotechnology, University of Tampere, Tampere, Finland
- Drug Discovery Graduate School, University of Turku, Turku, Finland
| | - Sofia Khan
- Institute of Biomedical Technology and BioMediTech, University of Tampere, Tampere, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Marianne Kuuslahti
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
| | - Kui Qian
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tommi Manninen
- Department of Cell Biology, Medical School, University of Tampere, Tampere, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology and BioMediTech, University of Tampere, Tampere, Finland
- Institute of Experimental Medical Science, Lund University, Lund, Sweden
- Tampere University Hospital, Tampere, Finland
| | - Yan-Ru Lou
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
7
|
Kim JS, Roberts JM, Weigel NL. Vitamin D and Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Donkena KV, Young CYF. Vitamin d, sunlight and prostate cancer risk. Adv Prev Med 2011; 2011:281863. [PMID: 21991434 PMCID: PMC3170721 DOI: 10.4061/2011/281863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is the second common cancer in men worldwide. The prevention of prostate cancer remains a challenge to researchers and clinicians. Here, we review the relationship of vitamin D and sunlight to prostate cancer risk. Ultraviolet radiation of the sunlight is the main stimulator for vitamin D production in humans. Vitamin D's antiprostate cancer activities may be involved in the actions through the pathways mediated by vitamin D metabolites, vitamin D metabolizing enzymes, vitamin D receptor (VDR), and VDR-regulated genes. Although laboratory studies including the use of animal models have shown that vitamin D has antiprostate cancer properties, whether it can effectively prevent the development and/or progression of prostate cancer in humans remains to be inconclusive and an intensively studied subject. This review will provide up-to-date information regarding the recent outcomes of laboratory and epidemiology studies on the effects of vitamin D on prostate cancer prevention.
Collapse
Affiliation(s)
- Krishna Vanaja Donkena
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Charles Y. F. Young
- Departments of Urology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
9
|
25-Hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand. J Steroid Biochem Mol Biol 2009; 118:162-70. [PMID: 19944755 DOI: 10.1016/j.jsbmb.2009.11.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 12/22/2022]
Abstract
25-Hydroxyvitamin D(3) 1alpha-hydroxylase encoded by CYP27B1 converts 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3), a vitamin D receptor ligand. 25-Hydroxyvitamin D(3) has been regarded as a prohormone. Using Cyp27b1 knockout cells and a 1alpha-hydroxylase-specific inhibitor we provide in four cellular systems, primary mouse kidney, skin, prostate cells and human MCF-7 breast cancer cells, evidence that 25-hydroxyvitamin D(3) has direct gene regulatory properties. The high expression of megalin, involved in 25-hydroxyvitamin D(3) internalisation, in Cyp27b1(-/-) cells explains their higher sensitivity to 25-hydroxyvitamin D(3). 25-Hydroxyvitamin D(3) action depends on the vitamin D receptor signalling supported by the unresponsiveness of the vitamin D receptor knockout cells. Molecular dynamics simulations show the identical binding mode for both 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3) with the larger volume of the ligand-binding pocket for 25-hydroxyvitamin D(3). Furthermore, we demonstrate direct anti-proliferative effects of 25-hydroxyvitamin D(3) in human LNCaP prostate cancer cells. The synergistic effect of 25-hydroxyvitamin D(3) with 1alpha,25-dihydroxyvitamin D(3) in Cyp27b1(-/-) cells further demonstrates the agonistic action of 25-hydroxyvitamin D(3) and suggests that a synergism between 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3) might be physiologically important. In conclusion, 25-hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand with gene regulatory and anti-proliferative properties.
Collapse
|
10
|
Torkko KC, van Bokhoven A, Mai P, Beuten J, Balic I, Byers TE, Hokanson JE, Norris JM, Barón AE, Lucia MS, Thompson IM, Leach RJ. VDR and SRD5A2 polymorphisms combine to increase risk for prostate cancer in both non-Hispanic White and Hispanic White men. Clin Cancer Res 2008; 14:3223-9. [PMID: 18483391 DOI: 10.1158/1078-0432.ccr-07-4894] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Vitamin D and dihydrotestosterone pathways interact to promote the growth of prostatic tissue. The nuclear vitamin D receptor (VDR) moderates the actions of vitamin D. 5alpha-Reductase type II (SRD5A2) codes for the enzyme that converts testosterone to dihydrotestosterone in the prostate. This study tested the interactions of VDR (CDX2, FokI) and SRD5A2 (V89L, A49T) polymorphisms, and their associations with prostate cancer. EXPERIMENTAL DESIGN This genetic association study included 932 non-Hispanic White (NHW) men and 414 Hispanic White (HW) men from South Texas. Cases had biopsy-confirmed cancer; controls had normal digital rectal exams and serum prostate-specific antigen levels of <2.5 ng/mL. RESULTS Using logistic regression analyses to test associations with prostate cancer, only the V89L polymorphism (VV genotype compared with LL/LV) in HW men was statistically significant [odds ratios (OR), 0.64; 95% confidence intervals (95% CI), 0.41-0.99]. The interaction terms for FokI and V89L in NHW men and CDX2 and V89L in HW men in the logistic model were significant (P = 0.02 and 0.03, respectively). When stratified by V89L genotype, the FokI polymorphism (TT/TC versus CC) was significantly associated with prostate cancer in NHW men with the V89L VV genotype (FokI OR, 1.53; 95% CI, 1.06-2.23). The CDX2 polymorphism (GG versus AG/AA) was significantly associated with prostate cancer only in HW men with the V89L VV genotype (CDX2 OR, 3.16; 95% CI, 1.39-7.19; interaction term P = 0.02). CONCLUSION Our results indicate that the SRD5A2 V89L VV genotype interacts with VDR FokI TT/CT genotypes in NHW men and VDR CDX2 GG genotypes in HW men to increase the risk for prostate cancer.
Collapse
Affiliation(s)
- Kathleen C Torkko
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu Y, Fang F, St. Clair DK, Josson S, Sompol P, Spasojevic I, St. Clair WH. Suppression of RelB-mediated manganese superoxide dismutase expression reveals a primary mechanism for radiosensitization effect of 1alpha,25-dihydroxyvitamin D(3) in prostate cancer cells. Mol Cancer Ther 2007; 6:2048-56. [PMID: 17604335 PMCID: PMC2692592 DOI: 10.1158/1535-7163.mct-06-0700] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear factor-kappaB provides an adaptive response to protect cancer cells against cytotoxicity induced by redox active therapeutics. RelB is uniquely expressed at a high level in prostate cancer with high Gleason scores. Recently, we showed that the level of RelB rapidly increases in androgen-independent prostate cancer cells after exposure to ionizing radiation (IR), leading to a reduction in intrinsic radiosensitivity. Here, we show that interaction of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)] with the vitamin D receptor significantly enhances radiosensitivity of prostate cancer cells at clinically relevant radiation doses. The radiosensitization effect of 1alpha,25-(OH)(2)D(3) is mediated, at least in part, by selectively suppressing IR-mediated RelB activation, leading to a reduced expression of its target gene MnSOD, a primary antioxidant enzyme in mitochondria. These results suggest that suppression of manganese superoxide dismutase is a mechanism by which 1alpha,25-(OH)(2)D(3) exerts its radiosensitization effect and that 1alpha,25-(OH)(2)D(3) may serve as an effective pharmacologic agent for selectively sensitizing prostate cancer cells to IR via suppression of antioxidant responses in mitochondria.
Collapse
Affiliation(s)
- Yong Xu
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky
| | - Fang Fang
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky
| | - Sajni Josson
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky
| | - Pradoldej Sompol
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|