1
|
Milan KL, Ramkumar KM. Regulatory mechanisms and pathological implications of CYP24A1 in Vitamin D metabolism. Pathol Res Pract 2024; 264:155684. [PMID: 39488987 DOI: 10.1016/j.prp.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
CYP24A1 is a crucial gene within the cytochrome P450 superfamily, responsible for encoding the enzyme 25-hydroxyvitamin D3-24-hydroxylase. This enzyme is involved in the catabolism of 1,25-dihydroxyvitamin D3, the biologically active form of vitamin D3, by hydroxylating its side chain. Through this process, CYP24A1 tightly regulates the bioavailability and physiological impact of vitamin D3 in the body. Dysregulation of CYP24A1, particularly its overexpression, has been increasingly associated with the progression of various diseases, including cancers, autoimmune disorders, and chronic inflammatory conditions. Elevated levels of CYP24A1 can lead to excessive degradation of vitamin D3, resulting in diminished levels of this critical hormone, which is essential for calcium homeostasis, immune function, and cellular proliferation. This review explores into the structural characteristics of CYP24A1, exploring how it influences its enzymatic activity. Furthermore, it examines the expression patterns of CYP24A1 across different diseases, emphasizing the enzyme's role in disease pathology. The review also discusses the regulatory mechanisms governing CYP24A1 expression, including genetic mutations, epigenetic modifications, and metabolite-mediated regulation. By understanding these mechanisms, the review provides insight into the potential therapeutic strategies that could target CYP24A1, aiming to alleviate its overexpression and restore vitamin D3 balance in disease states.
Collapse
Affiliation(s)
- K L Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - K M Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
2
|
In Silico Prediction of the Metabolic Resistance of Vitamin D Analogs against CYP3A4 Metabolizing Enzyme. Int J Mol Sci 2022; 23:ijms23147845. [PMID: 35887195 PMCID: PMC9322940 DOI: 10.3390/ijms23147845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
The microsomal cytochrome P450 3A4 (CYP3A4) and mitochondrial cytochrome P450 24A1 (CYP24A1) hydroxylating enzymes both metabolize vitamin D and its analogs. The three-dimensional (3D) structure of the full-length native human CYP3A4 has been solved, but the respective structure of the main vitamin D hydroxylating CYP24A1 enzyme is unknown. The structures of recombinant CYP24A1 enzymes have been solved; however, from studies of the vitamin D receptor, the use of a truncated protein for docking studies of ligands led to incorrect results. As the structure of the native CYP3A4 protein is known, we performed rigid docking supported by molecular dynamic simulation using CYP3A4 to predict the metabolic conversion of analogs of 1,25-dihydroxyvitamin D2 (1,25D2). This is highly important to the design of novel vitamin D-based drug candidates of reasonable metabolic stability as CYP3A4 metabolizes ca. 50% of the drug substances. The use of the 3D structure data of human CYP3A4 has allowed us to explain the substantial differences in the metabolic conversion of the side-chain geometric analogs of 1,25D2. The calculated free enthalpy of the binding of an analog of 1,25D2 to CYP3A4 agreed with the experimentally observed conversion of the analog by CYP24A1. The metabolic conversion of an analog of 1,25D2 to the main vitamin D hydroxylating enzyme CYP24A1, of unknown 3D structure, can be explained by the binding strength of the analog to the known 3D structure of the CYP3A4 enzyme.
Collapse
|
3
|
Nagamani S, Muthusamy K. A theoretical insight to understand the molecular mechanism of dual target ligand CTA-018 in the chronic kidney disease pathogenesis. PLoS One 2018; 13:e0203194. [PMID: 30286109 PMCID: PMC6171836 DOI: 10.1371/journal.pone.0203194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/16/2018] [Indexed: 11/21/2022] Open
Abstract
The level of the vitamin D in the bloodstream is regulated by cytochrome P450 enzyme 24-hydroxylase A1 (CYP24A1). Over expression of CYP24A1 enzyme is correlated with vitamin D deficiency and resistance to vitamin D therapy. Chronic kidney disease (CKD) patients are commonly reported with the above said expression variations. This deregulation could be solved by ligands that act as a vitamin D receptor (VDR) agonists and CYP24A1 antagonists. Posner et al., (2010) first time reported two new vitamin D analogues namely CTA-091 and CTA-018 to inhibit CYP24A1. The CTA-018 inhibited CYP24A1 with an IC50 27 ± 6 nM (10 times more potent than the ketoconazole (253 ± 20 nM)). CTA-018 induced VDR expression (15-fold lower than 1α,25(OH)2D3) and is under phase II clinical trial, whereas CTA-091 was not able to efficiently induce the VDR expression (>2000 nM). To explore the molecular mechanism, binding specificity of these two vitamin D analogues along with native ligand was extensively studied through in silico approaches. Through molecular dynamics simulations studies, we shown that the sulfonic group (O = S = O) in the side chain of CTA-018 plays an important role in the regulation of VDR agonistic activity. The electron lone pairs of the sulfonic group that interacted with His393 lead to be a factor for agonistic mechanism of VDR activity. Compared to azol-based compounds, CTA-018 binds the different sites in the CYP24A1 binding cavity and thus it could be a potent antagonistic for CYP24A1enzyme.
Collapse
|
4
|
Taban IM, Zhu J, DeLuca HF, Simons C. Analysis of the binding sites of vitamin D 1α-hydroxylase (CYP27B1) and vitamin D 24-hydroxylase (CYP24A1) for the design of selective CYP24A1 inhibitors: Homology modelling, molecular dynamics simulations and identification of key binding requirements. Bioorg Med Chem 2017; 25:5629-5636. [DOI: 10.1016/j.bmc.2017.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/20/2017] [Indexed: 01/26/2023]
|
5
|
Taban IM, Zhu J, DeLuca HF, Simons C. Synthesis, molecular modelling and CYP24A1 inhibitory activity of novel of ( E )- N -(2-(1 H -imidazol-1-yl)-2-(phenylethyl)-3/4-styrylbenzamides. Bioorg Med Chem 2017; 25:4076-4087. [DOI: 10.1016/j.bmc.2017.05.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/03/2023]
|
6
|
Rational design and synthesis of novel anti-prostate cancer agents bearing a 3,5-bis-trifluoromethylphenyl moiety. Bioorg Med Chem Lett 2016; 26:3636-40. [DOI: 10.1016/j.bmcl.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 11/21/2022]
|
7
|
Bassetto M, Ferla S, Pertusati F, Kandil S, Westwell AD, Brancale A, McGuigan C. Design and synthesis of novel bicalutamide and enzalutamide derivatives as antiproliferative agents for the treatment of prostate cancer. Eur J Med Chem 2016; 118:230-43. [PMID: 27131065 DOI: 10.1016/j.ejmech.2016.04.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PC) is one of the major causes of male death worldwide and the development of new and more potent anti-PC compounds is a constant requirement. Among the current treatments, (R)-bicalutamide and enzalutamide are non-steroidal androgen receptor antagonist drugs approved also in the case of castration-resistant forms. Both these drugs present a moderate antiproliferative activity and their use is limited due to the development of resistant mutants of their biological target. Insertion of fluorinated and perfluorinated groups in biologically active compounds is a current trend in medicinal chemistry, applied to improve their efficacy and stability profiles. As a means to obtain such effects, different modifications with perfluoro groups were rationally designed on the bicalutamide and enzalutamide structures, leading to the synthesis of a series of new antiproliferative compounds. Several new analogues displayed improved in vitro activity towards four different prostate cancer cell lines, while maintaining full AR antagonism and therefore representing promising leads for further development. Furthermore, a series of molecular modelling studies were performed on the AR antagonist conformation, providing useful insights on potential protein-ligand interactions.
Collapse
Affiliation(s)
- Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB, Cardiff, Wales, UK
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB, Cardiff, Wales, UK.
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB, Cardiff, Wales, UK
| | - Sahar Kandil
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB, Cardiff, Wales, UK
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB, Cardiff, Wales, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB, Cardiff, Wales, UK
| | - Christopher McGuigan
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB, Cardiff, Wales, UK
| |
Collapse
|
8
|
Ang SS, Salleh AB, Chor ALT, Normi YM, Tejo BA, Rahman MBA. Molecular characterization, modeling and docking of CYP107CB2 from Bacillus lehensis G1, an alkaliphile. Comput Biol Chem 2015; 56:19-29. [PMID: 25766878 DOI: 10.1016/j.compbiolchem.2015.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Cytochrome P450s are a superfamily of heme monooxygenases which catalyze a wide range of biochemical reactions. The reactions involve the introduction of an oxygen atom into an inactivated carbon of a compound which is essential to produce an intermediate of a hydroxylated product. The diversity of chemical reactions catalyzed by cytochrome P450s has led to their increased demand in numerous industrial and biotechnology applications. A recent study showed that a gene sequence encoding a CYP was found in the genome of Bacillus lehensis G1, and this gene shared structural similarity with the bacterial vitamin D hydroxylase (Vdh) from Pseudonocardia autotrophica. The objectives of present study was to mine, for a novel CYP from a new isolate B. lehensis G1 alkaliphile and determine the biological properties and functionalities of CYP in this bacterium. Our study employed the usage of computational methods to search for the novel CYP from CYP structural databases to identify the conserved pattern, functional domain and sequence properties of the uncharacterized CYP from B. lehensis G1. A computational homology model of the protein's structure was generated and a docking analysis was performed to provide useful structural knowledge on the enzyme's possible substrate and their interaction. Sequence analysis indicated that the newly identified CYP, termed CYP107CB2, contained the fingerprint heme binding sequence motif FxxGxxxCxG at position 336-345 as well as other highly conserved motifs characteristic of cytochrome P450 proteins. Using docking studies, we identified Ser-79, Leu-81, Val-231, Val-279, Val-383, Ala-232, Thr-236 and Thr-283 as important active site residues capable of stabilizing interactions with several potential substrates, including vitamin D3, 25-hydroxyvitamin D3 and 1α-hydroxyvitamin D3, in which all substrates docked proximally to the enzyme's heme center. Biochemical analysis indicated that CYP107CB2 is a biologically active protein to produce 1α,25-dihydroxyvitamin D3 from 1α-hydroxyvitamin D3. Based on these results, we conclude that the novel CYP107CB2 identified from B. lehensis G1 is a putative vitamin D hydroxylase which is possibly capable of catalyzing the bioconversion of parental vitamin D3 to calcitriol, or related metabolic products.
Collapse
Affiliation(s)
- Swi See Ang
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Adam Leow Thean Chor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Bimo Ario Tejo
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Ferla S, Gomaa MS, Brancale A, Zhu J, Ochalek JT, DeLuca HF, Simons C. Novel styryl-indoles as small molecule inhibitors of 25-hydroxyvitamin D-24-hydroxylase (CYP24A1): Synthesis and biological evaluation. Eur J Med Chem 2014; 87:39-51. [DOI: 10.1016/j.ejmech.2014.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
10
|
Ferla S, Aboraia AS, Brancale A, Pepper CJ, Zhu J, Ochalek JT, DeLuca HF, Simons C. Small-Molecule Inhibitors of 25-Hydroxyvitamin D-24-Hydroxylase (CYP24A1): Synthesis and Biological Evaluation. J Med Chem 2014; 57:7702-15. [DOI: 10.1021/jm5009314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Salvatore Ferla
- Medicinal
Chemistry, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Ahmed S. Aboraia
- Medicinal
Chemistry, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Andrea Brancale
- Medicinal
Chemistry, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Christopher J. Pepper
- Department
of Haematology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K
| | - Jinge Zhu
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| | - Justin T. Ochalek
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| | - Hector F. DeLuca
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| | - Claire Simons
- Medicinal
Chemistry, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| |
Collapse
|
11
|
Abstract
The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
12
|
Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys 2011; 523:9-18. [PMID: 22100522 DOI: 10.1016/j.abb.2011.11.003] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/19/2011] [Accepted: 11/01/2011] [Indexed: 01/08/2023]
Abstract
CYP24A1 is the cytochrome P450 component of the 25-hydroxyvitamin D(3)-24-hydroxylase enzyme that catalyzes the conversion of 25-hydroxyvitamin D(3) (25-OH-D(3)) and 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) into 24-hydroxylated products, which constitute the degradation of the vitamin D molecule. This review focuses on recent data in the CYP24A1 field, including biochemical, physiological and clinical developments. Notable among these are: the first crystal structure for rat CYP24A1; mutagenesis studies which change the regioselectivity of the enzyme; and the finding that natural inactivating mutations of CYP24A1 cause the genetic disease idiopathic infantile hypercalcemia (IIH). The review also discusses the emerging correlation between rising serum phosphate/FGF-23 levels and increased CYP24A1 expression in chronic kidney disease, which in turn underlies accelerated degradation of both serum 25-OH-D(3) and 1,25-(OH)(2)D(3) in this condition. This review concludes by evaluating the potential clinical utility of blocking this enzyme with CYP24A1 inhibitors in various disease states.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6.
| | | | | |
Collapse
|
13
|
Zhu J, Barycki R, Chiellini G, Deluca HF. Screening of selective inhibitors of 1α,25-dihydroxyvitamin D3 24-hydroxylase using recombinant human enzyme expressed in Escherichia coli. Biochemistry 2010; 49:10403-11. [PMID: 21058632 DOI: 10.1021/bi101488p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High-level heterologous expression of human 1α,25-dihydroxyvitamin D(3) 24-hydroxylase (CYP24A1) in Escherichia coli was attained via a fusion construct by appending the mature CYP24A1 without the leader sequence to the maltose binding protein (MBP). Facile purification was achieved efficiently through affinity chromatography and afforded fully functional enzyme of near homogeneity, with a k(cat) of 0.12 min(-1) and a K(M) of 0.19 μM toward 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. A convenient and reliable cell-free assay was established and used to screen vitamin D analogues with potential inhibitory properties toward CYP24A1. Some of the compounds exhibited potent inhibition with K(I) values as low as 0.021 μM. Furthermore, TS17 and CPA1 exhibited superior specificity toward CYP24A1 over 25-hydroxyvitamin D(3) 1α-hydroxylase (CYP27B1), with selectivities of 39 and 80, respectively. Addition of TS17 or CPA1 to a mouse osteoblast culture sustained the level of 1,25(OH)(2)D(3) in the medium. Their activities in vitamin D receptor (VDR) binding, CYP24A1 transcription, and HL-60 cell differentiation were evaluated as well.
Collapse
Affiliation(s)
- Jinge Zhu
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
14
|
Aboraia AS, Yee SW, Gomaa MS, Shah N, Robotham AC, Makowski B, Prosser D, Brancale A, Jones G, Simons C. Synthesis and CYP24A1 inhibitory activity of N-(2-(1H-imidazol-1-yl)-2-phenylethyl)arylamides. Bioorg Med Chem 2010; 18:4939-46. [DOI: 10.1016/j.bmc.2010.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/27/2010] [Accepted: 06/04/2010] [Indexed: 11/24/2022]
|
15
|
Annalora AJ, Goodin DB, Hong WX, Zhang Q, Johnson EF, Stout CD. Crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism. J Mol Biol 2009; 396:441-51. [PMID: 19961857 DOI: 10.1016/j.jmb.2009.11.057] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 11/18/2009] [Accepted: 11/21/2009] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 (CYP) 24A1 catalyzes the side-chain oxidation of the hormonal form of vitamin D. Expression of CYP24A1 is up-regulated to attenuate vitamin D signaling associated with calcium homeostasis and cellular growth processes. The development of therapeutics for disorders linked to vitamin D insufficiency would be greatly facilitated by structural knowledge of CYP24A1. Here, we report the crystal structure of rat CYP24A1 at 2.5 A resolution. The structure exhibits an open cleft leading to the active-site heme prosthetic group on the distal surface that is likely to define the path of substrate access into the active site. The entrance to the cleft is flanked by conserved hydrophobic residues on helices A' and G', suggesting a mode of insertion into the inner mitochondrial membrane. A docking model for 1alpha,25-dihydroxyvitamin D(3) binding in the open form of CYP24A1 that clarifies the structural determinants of secosteroid recognition and validates the predictive power of existing homology models of CYP24A1 is proposed. Analysis of CYP24A1's proximal surface identifies the determinants of adrenodoxin recognition as a constellation of conserved residues from helices K, K'', and L that converge with an adjacent lysine-rich loop for binding the redox protein. Overall, the CYP24A1 structure provides the first template for understanding membrane insertion, substrate binding, and redox partner interaction in mitochondrial P450s.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Roumen L, Sanders MPA, Pieterse K, Hilbers PAJ, Plate R, Custers E, de Gooyer M, Smits JFM, Beugels I, Emmen J, Ottenheijm HCJ, Leysen D, Hermans JJR. Construction of 3D models of the CYP11B family as a tool to predict ligand binding characteristics. J Comput Aided Mol Des 2007; 21:455-71. [PMID: 17646925 PMCID: PMC2039848 DOI: 10.1007/s10822-007-9128-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 07/09/2007] [Indexed: 10/26/2022]
Abstract
Aldosterone is synthesised by aldosterone synthase (CYP11B2). CYP11B2 has a highly homologous isoform, steroid 11beta-hydroxylase (CYP11B1), which is responsible for the biosynthesis of aldosterone precursors and glucocorticoids. To investigate aldosterone biosynthesis and facilitate the search for selective CYP11B2 inhibitors, we constructed three-dimensional models for CYP11B1 and CYP11B2 for both human and rat. The models were constructed based on the crystal structure of Pseudomonas Putida CYP101 and Oryctolagus Cuniculus CYP2C5. Small steric active site differences between the isoforms were found to be the most important determinants for the regioselective steroid synthesis. A possible explanation for these steric differences for the selective synthesis of aldosterone by CYP11B2 is presented. The activities of the known CYP11B inhibitors metyrapone, R-etomidate, R-fadrazole and S-fadrazole were determined using assays of V79MZ cells that express human CYP11B1 and CYP11B2, respectively. By investigating the inhibitors in the human CYP11B models using molecular docking and molecular dynamics simulations we were able to predict a similar trend in potency for the inhibitors as found in the in vitro assays. Importantly, based on the docking and dynamics simulations it is possible to understand the enantioselectivity of the human enzymes for the inhibitor fadrazole, the R-enantiomer being selective for CYP11B2 and the S-enantiomer being selective for CYP11B1.
Collapse
Affiliation(s)
- Luc Roumen
- BioModeling and BioInformatics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|