1
|
Serum 25-Hydroxyvitamin D Is Differentially Associated with Early and Late Age-Related Macular Degeneration in the United States Population. Nutrients 2023; 15:nu15051216. [PMID: 36904215 PMCID: PMC10005371 DOI: 10.3390/nu15051216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) has been the leading cause of irreversible blindness in industrialized countries. Emerging data suggest that serum vitamin D levels may be associated with AMD but show mixed results. National-level population data on the relationship between vitamin D and AMD severities are still lacking. METHODS We used data from the National Health and Nutrition Examination Survey (NHANES) 2005 to 2008. Retinal photographs were taken and graded for AMD stage. The odds ratio (OR) of AMD and its subtype was calculated after adjusting for confounding factors. Restricted cubic spline (RCS) analyses were used to explore potential non-linear relations. RESULTS A total of 5041 participants with a mean age of 59.6 years were included. After adjusting for covariates, participants with higher level of serum 25-hydroxyvitamin D [25(OH)D] had significantly greater odds of early AMD (OR, 1.65; 95% CI, 1.08-2.51) and decreased risk of late AMD (OR, 0.29; 95% CI, 0.09-0.88). When stratified by age, a positive association between the level of serum 25(OH)D and early AMD was present in the <60 years group (OR, 2.79; 95% CI, 1.08-7.29), whereas a negative relation between the level of serum 25(OH)D and late AMD was detected in the ≥60 years group (OR, 0.24; 95% CI, 0.08-0.76). CONCLUSIONS A higher level of serum 25(OH)D was related to increased risk of early AMD in those <60 years and decreased risk of late AMD in those ≥60 years.
Collapse
|
2
|
Calcitriol and non-calcemic vitamin D analogue, 22-oxacalcitriol, attenuate developmental and pathological choroidal vasculature angiogenesis ex vivo and in vivo. Oncotarget 2020; 11:493-509. [PMID: 32082484 PMCID: PMC7007294 DOI: 10.18632/oncotarget.27380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/19/2019] [Indexed: 01/03/2023] Open
Abstract
Aberrant ocular angiogenesis can underpin vision loss in leading causes of blindness, including neovascular age-related macular degeneration and proliferative diabetic retinopathy. Current pharmacological interventions require repeated invasive administrations, may lack efficacy and are associated with poor patient compliance and tachyphylaxis. Vitamin D has de novo anti-angiogenic properties. Here, our aim was to validate the ocular anti-angiogenic activity of biologically active vitamin D, calcitriol, and selected vitamin D analogue, 22-oxacalcitriol. Calcitriol induced a significant reduction in ex vivo mouse choroidal fragment sprouting. Viability studies in a human RPE cell line suggested non-calcemic vitamin D analogues including 22-oxacalcitriol have less off-target anti-proliferative activity compared to calcitriol and other analogues. Thereafter, the anti-angiogenic activity of 22-oxacalcitriol was demonstrated in an ex vivo mouse choroidal fragment sprouting assay. In zebrafish larvae, 22-oxacalcitriol was found to be anti-angiogenic, inducing a dose-dependent reduction in choriocapillaris development. Subcutaneously administered calcitriol failed to attenuate mouse retinal vasculature development. However, calcitriol and 22-oxacalcitriol administered intraperitoneally, significantly attenuated lesion volume in the laser-induced choroidal neovascularisation mouse model. In summary, calcitriol and 22-oxacalcitriol attenuate ex vivo and in vivo choroidal vasculature angiogenesis. Therefore, vitamin D may have potential as an interventional treatment for ophthalmic neovascular indications.
Collapse
|
3
|
Cheng HS, Lee JXT, Wahli W, Tan NS. Exploiting vulnerabilities of cancer by targeting nuclear receptors of stromal cells in tumor microenvironment. Mol Cancer 2019; 18:51. [PMID: 30925918 PMCID: PMC6441226 DOI: 10.1186/s12943-019-0971-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
The tumor microenvironment is a complex and dynamic cellular community comprising the tumor epithelium and various tumor-supporting cells such as immune cells, fibroblasts, immunosuppressive cells, adipose cells, endothelial cells, and pericytes. The interplay between the tumor microenvironment and tumor cells represents a key contributor to immune evasiveness, physiological hardiness and the local and systemic invasiveness of malignant cells. Nuclear receptors are master regulators of physiological processes and are known to play pro-/anti-oncogenic activities in tumor cells. However, the actions of nuclear receptors in tumor-supporting cells have not been widely studied. Given the excellent druggability and extensive regulatory effects of nuclear receptors, understanding their biological functionality in the tumor microenvironment is of utmost importance. Therefore, the present review aims to summarize recent evidence about the roles of nuclear receptors in tumor-supporting cells and their implications for malignant processes such as tumor proliferation, evasion of immune surveillance, angiogenesis, chemotherapeutic resistance, and metastasis. Based on findings derived mostly from cell culture studies and a few in vivo animal cancer models, the functions of VDR, PPARs, AR, ER and GR in tumor-supporting cells are relatively well-characterized. Evidence for other receptors, such as RARβ, RORγ, and FXR, is limited yet promising. Hence, the nuclear receptor signature in the tumor microenvironment may harbor prognostic value. The clinical prospects of a tumor microenvironment-oriented cancer therapy exploiting the nuclear receptors in different tumor-supporting cells are also encouraging. The major challenge, however, lies in the ability to develop a highly specific drug delivery system to facilitate precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore, 308232, Singapore.,INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France.,Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015, Lausanne, Switzerland
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
4
|
Jamali N, Wang S, Darjatmoko SR, Sorenson CM, Sheibani N. Vitamin D receptor expression is essential during retinal vascular development and attenuation of neovascularization by 1, 25(OH)2D3. PLoS One 2017; 12:e0190131. [PMID: 29272316 PMCID: PMC5741250 DOI: 10.1371/journal.pone.0190131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamin D provides a significant benefit to human health, and its deficiency has been linked to a variety of diseases including cancer. Vitamin D exhibits anticancer effects perhaps through inhibition of angiogenesis. We previously showed that the active form of vitamin D (1, 25(OH)2D3; calcitriol) is a potent inhibitor of angiogenesis in mouse model of oxygen-induced ischemic retinopathy (OIR). Many of vitamin D's actions are mediated through vitamin D receptor (VDR). However, the role VDR expression plays in vascular development and inhibition of neovascularization by 1, 25(OH)2D3 remains unknown. Here using wild type (Vdr +/+) and Vdr-deficient (Vdr -/-) mice, we determined the impact of Vdr expression on postnatal development of retinal vasculature and retinal neovascularization during OIR. We observed no significant effect on postnatal retinal vascular development in Vdr -/- mice up to postnatal day 21 (P21) compared with Vdr +/+ mice. However, we observed an increase in density of pericytes (PC) and a decrease in density of endothelial cells (EC) in P42 Vdr -/- mice compared with Vdr +/+ mice, resulting in a significant decrease in the EC/PC ratio. Although we observed no significant impact on vessel obliteration and retinal neovascularization in Vdr -/- mice compared with Vdr +/+ mice during OIR, the VDR expression was essential for inhibition of retinal neovascularization by 1, 25(OH)2D3. In addition, the adverse impact of 1, 25(OH)2D3 treatment on the mouse bodyweight was also dependent on VDR expression. Thus, VDR expression plays a significant role during retinal vascular development, especially during maturation of retinal vasculature by promoting PC quiescence and EC survival, and inhibition of ischemia-mediated retinal neovascularization by 1, 25(OH)2D3.
Collapse
Affiliation(s)
- Nasim Jamali
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Shoujian Wang
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Soesiawati R Darjatmoko
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
5
|
Jamali N, Sorenson CM, Sheibani N. Vitamin D and regulation of vascular cell function. Am J Physiol Heart Circ Physiol 2017; 314:H753-H765. [PMID: 29351464 DOI: 10.1152/ajpheart.00319.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency is linked to pathogenesis of many diseases including cardiovascular, cancer, and various eye diseases. In recent years, important roles for vitamin D in regulation of immune function, inflammation, angiogenesis, and aging have been demonstrated. Thus, vitamin D and its analogs have been evaluated for the treatment of various types of cancer and chronic diseases. We have previously shown that the active form of vitamin D [1,25(OH)2D3] is a potent inhibitor of angiogenesis. This activity is consistent with the important role proposed for vitamin D and its analogs in the mitigation of tumor growth through inhibition of angiogenesis. Here, we review the important nutritional value of vitamin D and the abnormalities linked to its deficiency. We will explore its potential role as a regulator of angiogenesis and vascular cell function and the role vitamin D receptor (VDR) expression plays in these activities during vascular development and neovascularization. Our studies have established an important role for 1,25(OH)2D3 and VDR in the regulation of perivascular supporting cell function. In addition, the interaction of 1,25(OH)2D3 and VDR is essential for these activities and inhibition of neovascularization. Delineating the signaling pathways involved and identification of genes that are the target of 1,25(OH)2D3 regulation in vascular cells will allow us to identify novel pathways that are targets for regulation of vascular function and angiogenesis.
Collapse
Affiliation(s)
- Nasim Jamali
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
6
|
Maj E, Filip-Psurska B, Milczarek M, Psurski M, Kutner A, Wietrzyk J. Vitamin D derivatives potentiate the anticancer and anti-angiogenic activity of tyrosine kinase inhibitors in combination with cytostatic drugs in an A549 non-small cell lung cancer model. Int J Oncol 2017; 52:337-366. [PMID: 29345296 PMCID: PMC5741374 DOI: 10.3892/ijo.2017.4228] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022] Open
Abstract
Numerous in vitro and in vivo studies have demonstrated that calcitriol [1,25(OH)2D3] and different vitamin D analogs possess antineoplastic activity, regulating proliferation, differentiation and apoptosis, as well as angiogenesis. Vitamin D compounds have been shown to exert synergistic effects when used in combination with different agents used in anticancer therapies in different cancer models. The aim of this study was to evaluate the mechanisms of the cooperation of the vitamin D compounds [1,24(OH)2D3 (PRI-2191) and 1,25(OH)2D3] with tyrosine kinase inhibitors (imatinib and sunitinib) together with cytostatics (cisplatin and docetaxel) in an A549 non-small cell lung cancer model. The cytotoxic effects of the test compounds used in different combinations were evaluated on A549 lung cancer cells, as well as on human lung microvascular endothelial cells (HLMECs). The effects of such combinations on the cell cycle and cell death were also determined. In addition, changes in the expression of proteins involved in cell cycle regulation, angiogenesis and the action of vitamin D were analyzed. Moreover, the effects of 1,24(OH)2D3 on the anticancer activity of sunitinib and sunitinib in combination with docetaxel were examined in an A549 lung cancer model in vivo. Experiments aiming at evaluating the cytotoxicity of the combinations of the test agents revealed that imatinib and sunitinib together with cisplatin or docetaxel exerted potent anti-proliferative effects in vitro on A549 lung cancer cells and in HLMECs; however, 1,24(OH)2D3 and 1,25(OH)2D3 enhanced the cytotoxic effects only in the endothelial cells. Among the test agents, sunitinib and cisplatin decreased the secretion of vascular endothelial growth factor (VEGF)-A from the A549 lung cancer cells. The decrease in the VEGF-A level following incubation with cisplatin correlated with a higher p53 protein expression, while no such correlation was observed following treatment of the A549 cells with sunitinib. Sunitinib together with docetaxel and 1,24(OH)2D3 exhibited a more potent anticancer activity in the A549 lung cancer model compared to double combinations and to treatment with the compounds alone. The observed anticancer activity may be the result of the influence of the test agents on the process of tumor angiogenesis, for example, through the downregulation of VEGF-A expression in tumor and also on the induction of cell death inside the tumor.
Collapse
Affiliation(s)
- Ewa Maj
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Beata Filip-Psurska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Magdalena Milczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Mateusz Psurski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Andrzej Kutner
- Pharmaceutical Research Institute, 01-793 Warsaw, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
7
|
Annweiler C, Drouet M, Duval GT, Paré PY, Leruez S, Dinomais M, Milea D. Circulating vitamin D concentration and age-related macular degeneration: Systematic review and meta-analysis. Maturitas 2016; 88:101-12. [PMID: 27105707 DOI: 10.1016/j.maturitas.2016.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/01/2016] [Indexed: 12/18/2022]
Abstract
Vitamin D may be involved in ocular function in older adults, but there is no current consensus on a possible association between circulating concentrations of 25-hydroxyvitamin D (25OHD) and the occurrence of age-related macular degeneration (AMD). Our objective was to systematically review and quantitatively assess the association of circulating 25OHD concentration with AMD. A Medline search was conducted in November 2015, with no date limit, using the MeSH terms "Vitamin D" OR "Vitamin D deficiency" OR "Ergocalciferols" OR 'Cholecalciferol' combined with "Age-related macular degeneration" OR "Macular degeneration" OR "Retinal degeneration" OR "Macula lutea" OR "Retina". Fixed and random-effects meta-analyses were performed to compute (i) standard mean difference in 25OHD concentration between AMD and non-AMD patients; (ii) AMD risk according to circulating 25OHD concentration. Of the 243 retrieved studies, 11 observational studies-10 cross-sectional studies and 1 cohort study-met the selection criteria. The number of participants ranged from 65 to 17,045 (52-100% women), and the number with AMD ranged from 31 to 1440. Circulating 25OHD concentration was 15% lower in AMD compared with non-AMD on average. AMD was inversely associated with the highest 25OHD quintile compared with the lowest (summary odds ratio (OR)=0.83 [95%CI:0.71-0.97]), notably late AMD (summary OR=0.47 [95%CI:0.28-0.79]). Circulating 25OHD<50nmol/L was also associated with late-stage AMD (summary OR=2.18 [95%CI:1.34-3.56]), an association that did not persist when all categories of AMD were considered (summary OR=1.26 [95%CI:0.90-1.76]). In conclusion, this meta-analysis provides evidence that high 25OHD concentrations may be protective against AMD, and that 25OHD concentrations below 50nmol/L are associated with late AMD.
Collapse
Affiliation(s)
- Cedric Annweiler
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, Angers University Hospital, UPRES EA 4638, University of Angers, LUNAM, Angers, France; Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Morgane Drouet
- Department of Neuroscience, Division of Ophthalmology, Angers University Hospital, Angers, France
| | - Guillaume T Duval
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, Angers University Hospital, UPRES EA 4638, University of Angers, LUNAM, Angers, France
| | - Pierre-Yves Paré
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, Angers University Hospital, UPRES EA 4638, University of Angers, LUNAM, Angers, France
| | - Stephanie Leruez
- Department of Neuroscience, Division of Ophthalmology, Angers University Hospital, Angers, France
| | - Mickael Dinomais
- Université d'Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS)-EA7315, LUNAM, Université d'Angers, Angers F-49000, France; Département de Médecine Physique et de Réadaptation, CHU, Angers F-49933, France
| | - Dan Milea
- Department of Neuroscience, Division of Ophthalmology, Angers University Hospital, Angers, France; Singapore Eye Research Institute, Singapore, Singapore; Singapore National Eye Centre, Singapore, Singapore; Duke-NUS, Neuroscience and Behavioural Disorders, Singapore, Singapore
| |
Collapse
|
8
|
Hidalgo AA, Deeb KK, Pike JW, Johnson CS, Trump DL. Dexamethasone enhances 1alpha,25-dihydroxyvitamin D3 effects by increasing vitamin D receptor transcription. J Biol Chem 2011; 286:36228-37. [PMID: 21868377 DOI: 10.1074/jbc.m111.244061] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner.
Collapse
Affiliation(s)
- Alejandro A Hidalgo
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
9
|
Biochemical characterization of nuclear receptors for vitamin D3 and glucocorticoids in prostate stroma cell microenvironment. Biochem Biophys Res Commun 2011; 412:13-9. [DOI: 10.1016/j.bbrc.2011.06.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/21/2022]
|
10
|
Role of vitamin d in the prevention of pancreatic cancer. J Nutr Metab 2011; 2010:721365. [PMID: 21274445 PMCID: PMC3025373 DOI: 10.1155/2010/721365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/12/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a malignancy of poor prognosis which is mostly diagnosed at advanced stages. Current treatment modalities are very limited creating great interest for novel preventive and therapeutic options. Vitamin D seems to have a protective effect against pancreatic cancer by participating in numerous proapoptotic, antiangiogenic, anti-inflammatory, prodifferentiating, and immunomodulating mechanisms. 25-hydroxyvitamin D [25(OH)D] serum concentrations are currently the best indicator of vitamin D status. There are three main sources of vitamin D: sun exposure, diet,and dietary supplements. Sun exposure has been associated with lower incidence of pancreatic cancer in ecological studies. Increased vitamin D levels seem to protect against pancreatic cancer, but caution is needed as excessive dietary intake may have opposite results. Future studies will verify the role of vitamin D in the prevention and therapy of pancreatic cancer and will lead to guidelines on adequate sun exposure and vitamin D dietary intake.
Collapse
|
11
|
Hidalgo AA, Trump DL, Johnson CS. Glucocorticoid regulation of the vitamin D receptor. J Steroid Biochem Mol Biol 2010; 121:372-5. [PMID: 20398752 PMCID: PMC2907065 DOI: 10.1016/j.jsbmb.2010.03.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 03/04/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immuno-precipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter.
Collapse
Affiliation(s)
- Alejandro A Hidalgo
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | | | | |
Collapse
|
12
|
Lange TS, Stuckey AR, Robison K, Kim KK, Singh RK, Raker CA, Brard L. Effect of a vitamin D(3) derivative (B3CD) with postulated anti-cancer activity in an ovarian cancer animal model. Invest New Drugs 2009; 28:543-53. [PMID: 19582372 DOI: 10.1007/s10637-009-9284-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/17/2009] [Indexed: 12/11/2022]
Abstract
The objective of the present study was to test the hypothesis that Calcidiol derivative B3CD qualifies as a potential anti-cancer drug in vivo employing an ovarian cancer xenograft model in mice. In addition, the selectivity of B3CD on viability and proliferation of platinum-resistant human ovarian cancer cell lines in comparison to control cell lines was analyzed in vitro. B3CD displayed cell line-specific cytotoxicity screened against a panel of ovarian and other carcinoma cell lines, endothelial and control cells. B3CD, at sub-cytotoxic concentrations, revealed stronger effects on the proliferation of SKOV-3 ovarian cancer cells vs. primary fibroblasts as determined by BrdU incorporation analysis. Treatment with B3CD at 0.5 microM resulted in highly condensed chromatin and fragmented nuclei in SKOV-3 cells but not in primary fibroblasts. B3CD induced cell death at low drug concentrations (< or = 0.5 microM) in SKOV-3 ovarian cancer cells is mediated by the p38 MAPK signaling pathway: B3CD induced p38 MAPK expression and activation in SKOV-3 cells and inhibition of p38 signaling counteracted B3CD induced cell death in vitro. An ovarian cancer cell animal model (human SKOV-3 cell derived xenografts in nude mice) revealed that tumor growth in few B3CD treated mice accelerated while the majority of B3CD treated mice displayed delayed tumor growth or full tumor regression. B3CD possesses anti-ovarian cancer properties in vitro and in vivo. We propose the further development of non-calcemic bromoacetoxy derivatives of vitamin D(3) as potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Thilo S Lange
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants' Hospital of RI, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Valdivielso JM, Coll B, Fernandez E. Vitamin D and the vasculature: can we teach an old drug new tricks? Expert Opin Ther Targets 2009; 13:29-38. [PMID: 19063704 DOI: 10.1517/14728220802564390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vitamin D is a steroid hormone known for its role in regulating levels of calcium and phosphorus. Vitamin D has important autocrine/paracrine roles and it is involved in vascular biology. Clinical studies have shown a relationship between vitamin D levels and cardiovascular health, and low levels of vitamin D metabolites have been associated with higher incidence of congestive heart failure and increases in mortality. OBJECTIVE To summarise the effect of vitamin D on cardiovascular pathology, the leading cause of death in chronic kidney disease patients. CONCLUSIONS All results indicate a potential effect of vitamin D on cardiovascular health. Therefore, maintaining optimum levels of circulating vitamin D is critical for a healthy cardiovascular system. In patients with low vitamin D status, like renal patients, supplementation with vitamin D metabolites has shown beneficial cardiovascular effects.
Collapse
Affiliation(s)
- José M Valdivielso
- Hospital Universitario Arnau de Vilanova, Experimental Nephrology Laboratory, Spain.
| | | | | |
Collapse
|
14
|
Rassnick KM, Muindi JR, Johnson CS, Balkman CE, Ramnath N, Yu WD, Engler KL, Page RL, Trump DL. In vitro and in vivo evaluation of combined calcitriol and cisplatin in dogs with spontaneously occurring tumors. Cancer Chemother Pharmacol 2008; 62:881-91. [PMID: 18246349 PMCID: PMC2715945 DOI: 10.1007/s00280-008-0678-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 01/06/2008] [Indexed: 01/28/2023]
Abstract
PURPOSE Calcitriol potentiates cisplatin-mediated activity in a variety of tumor models. We examine here, the effect of calcitriol and cisplatin pre-clinically and clinically in canine spontaneous tumors through in vitro studies on tumor cells and through a phase I study of calcitriol and cisplatin to identify the maximum-tolerated dosage (MTD) of this combination in dogs with cancer and to characterize the pharmacokinetic disposition of calcitriol in dogs. METHODS Canine tumor cells were investigated for calcitriol/cisplatin interactions on proliferation using an MTT assay in a median-dose effect analysis; data were used to derive a combination index (CI). Cisplatin was given at a fixed dosage of 60 mg/m2. Calcitriol was given i.v. and the dosage was escalated in cohorts of three dogs until the MTD was defined. Serum calcitriol concentrations were quantified by radioimmunoassay. RESULTS In vitro, CIs < 1.0 were obtained for all combinations of calcitriol/cisplatin examined. The MTD was 3.75 microg/kg calcitriol in combination with cisplatin, and hypercalcemia was the dose-limiting toxicosis. The relationship between calcitriol dosage and either Cmax or AUC was linear. Calcitriol dosages >1.5 microg/kg achieved Cmax > or = 9.8 ng/mL and dosages >1.0 microg/kg achieved AUC > or = 45 h ng/mL. CONCLUSIONS Calcitriol and cisplatin have synergistic antiproliferative effects on multiple canine tumor cells and high-dosages of i.v. calcitriol in combination with cisplatin can be safely administered to dogs. Cmax and AUC at the MTD 3.75 microg/kg calcitriol exceed concentrations associated with antitumor activity in a murine model, indicating this combination might have significant clinical utility in dogs.
Collapse
Affiliation(s)
- Kenneth M Rassnick
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Box 31, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|