1
|
Pejčić T, Zeković M, Bumbaširević U, Kalaba M, Vovk I, Bensa M, Popović L, Tešić Ž. The Role of Isoflavones in the Prevention of Breast Cancer and Prostate Cancer. Antioxidants (Basel) 2023; 12:antiox12020368. [PMID: 36829927 PMCID: PMC9952119 DOI: 10.3390/antiox12020368] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
This narrative review summarizes epidemiological studies on breast cancer and prostate cancer with an overview of their global incidence distribution to investigate the relationship between these diseases and diet. The biological properties, mechanisms of action, and available data supporting the potential role of isoflavones in the prevention of breast cancer and prostate cancer are discussed. Studies evaluating the effects of isoflavones in tissue cultures of normal and malignant breast and prostate cells, as well as the current body of research regarding the effects of isoflavones attained through multiple modifications of cellular molecular signaling pathways and control of oxidative stress, are summarized. Furthermore, this review compiles literature sources reporting on the following: (1) levels of estrogen in breast and prostate tissue; (2) levels of isoflavones in the normal and malignant tissue of these organs in European and Asian populations; (3) average concentrations of isoflavones in the secretion of these organs (milk and semen). Finally, particular emphasis is placed on studies investigating the effect of isoflavones on tissues via estrogen receptors (ER).
Collapse
Affiliation(s)
- Tomislav Pejčić
- Faculty of Medicine, University of Belgrade, dr Subotića 8, 11000 Belgrade, Serbia
- Clinic of Urology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
- Correspondence: (T.P.); (I.V.)
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Uroš Bumbaširević
- Faculty of Medicine, University of Belgrade, dr Subotića 8, 11000 Belgrade, Serbia
- Clinic of Urology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Milica Kalaba
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Irena Vovk
- Laboratory for Food Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Correspondence: (T.P.); (I.V.)
| | - Maja Bensa
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Lazar Popović
- Department of Medical Oncology, Oncology Institute of Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
2
|
Bauckneht M, Marini C, Cossu V, Campi C, Riondato M, Bruno S, Orengo AM, Vitale F, Carta S, Chiola S, Chiesa S, Miceli A, D’Amico F, Fornarini G, Terrone C, Piana M, Morbelli S, Signori A, Barboro P, Sambuceti G. Gene's expression underpinning the divergent predictive value of [18F]F-fluorodeoxyglucose and prostate-specific membrane antigen positron emission tomography in primary prostate cancer: a bioinformatic and experimental study. J Transl Med 2023; 21:3. [PMID: 36600265 PMCID: PMC9811737 DOI: 10.1186/s12967-022-03846-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Positron Emission Tomography (PET) imaging with Prostate-Specific Membrane Antigen (PSMA) and Fluorodeoxyglucose (FDG) represent promising biomarkers for risk-stratification of Prostate Cancer (PCa). We verified whether the expression of genes encoding for PSMA and enzymes regulating FDG cellular uptake are independent and additive prognosticators in PCa. METHODS mRNA expression of genes involved in glucose metabolism and PSMA regulation obtained from primary PCa specimens were retrieved from open-source databases and analyzed using an integrative bioinformatics approach. Machine Learning (ML) techniques were used to create predictive Progression-Free Survival (PFS) models. Cellular models of primary PCa with different aggressiveness were used to compare [18F]F-PSMA-1007 and [18F]F-FDG uptake kinetics in vitro. Confocal microscopy, immunofluorescence staining, and quantification analyses were performed to assess the intracellular and cellular membrane PSMA expression. RESULTS ML analyses identified a predictive functional network involving four glucose metabolism-related genes: ALDOB, CTH, PARP2, and SLC2A4. By contrast, FOLH1 expression (encoding for PSMA) did not provide any additive predictive value to the model. At a cellular level, the increase in proliferation rate and migratory potential by primary PCa cells was associated with enhanced FDG uptake and decreased PSMA retention (paralleled by the preferential intracellular localization). CONCLUSIONS The overexpression of a functional network involving four glucose metabolism-related genes identifies a higher risk of disease progression since the earliest phases of PCa, in agreement with the acknowledged prognostic value of FDG PET imaging. By contrast, the prognostic value of PSMA PET imaging is independent of the expression of its encoding gene FOLH1. Instead, it is influenced by the protein docking to the cell membrane, regulating its accessibility to tracer binding.
Collapse
Affiliation(s)
- Matteo Bauckneht
- grid.5606.50000 0001 2151 3065Department of Health Sciences, University of Genoa, 16132 Genoa, Italy ,grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Cecilia Marini
- grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy ,grid.428490.30000 0004 1789 9809CNR, Institute of Molecular Bioimaging and Physiology (IBFM), 20054 Milan, Italy
| | - Vanessa Cossu
- grid.5606.50000 0001 2151 3065Department of Health Sciences, University of Genoa, 16132 Genoa, Italy ,grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Cristina Campi
- grid.5606.50000 0001 2151 3065LISCOMP Lab, Department of Mathematics (DIMA), University of Genoa, 16132 Genoa, Italy
| | - Mattia Riondato
- grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Bruno
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy
| | - Anna Maria Orengo
- grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesca Vitale
- grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sonia Carta
- grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Chiola
- grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sabrina Chiesa
- grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alberto Miceli
- grid.5606.50000 0001 2151 3065Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Francesca D’Amico
- grid.5606.50000 0001 2151 3065Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Giuseppe Fornarini
- grid.410345.70000 0004 1756 7871Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Carlo Terrone
- grid.410345.70000 0004 1756 7871Department of Urology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy ,grid.5606.50000 0001 2151 3065Department of Surgical and Diagnostic Integrated Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Michele Piana
- grid.5606.50000 0001 2151 3065LISCOMP Lab, Department of Mathematics (DIMA), University of Genoa, 16132 Genoa, Italy ,grid.482259.00000 0004 1774 9464CNR-SPIN Genoa, 16132 Genoa, Italy
| | - Silvia Morbelli
- grid.5606.50000 0001 2151 3065Department of Health Sciences, University of Genoa, 16132 Genoa, Italy ,grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessio Signori
- grid.5606.50000 0001 2151 3065Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Paola Barboro
- grid.410345.70000 0004 1756 7871Proteomic and Mass Spectrometry Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gianmario Sambuceti
- grid.5606.50000 0001 2151 3065Department of Health Sciences, University of Genoa, 16132 Genoa, Italy ,grid.410345.70000 0004 1756 7871Nuclear Medicine Unit, IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
3
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
4
|
Božović A, Mandušić V, Todorović L, Krajnović M. Estrogen Receptor Beta: The Promising Biomarker and Potential Target in Metastases. Int J Mol Sci 2021; 22:ijms22041656. [PMID: 33562134 PMCID: PMC7914503 DOI: 10.3390/ijms22041656] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The discovery of the Estrogen Receptor Beta (ERβ) in 1996 opened new perspectives in the diagnostics and therapy of different types of cancer. Here, we present a review of the present research knowledge about its role in endocrine-related cancers: breast, prostate, and thyroid, and colorectal cancers. We also discuss the reasons for the controversy of its role in carcinogenesis and why it is still not in use as a biomarker in clinical practice. Given that the diagnostics and therapy would benefit from the introduction of new biomarkers, we suggest ways to overcome the contradictions in elucidating the role of ERβ.
Collapse
|
5
|
Effects of estrogen receptor signaling on prostate cancer carcinogenesis. Transl Res 2020; 222:56-66. [PMID: 32413498 DOI: 10.1016/j.trsl.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/11/2020] [Accepted: 04/07/2020] [Indexed: 12/25/2022]
Abstract
Management of advanced prostate cancer remains complex, with substantial changes in treatment options emerging in recent years having implications for treatment selection and sequencing. Recognition of the importance of androgen signaling has led to life-prolonging treatments, as well as "liquid biopsy" techniques to guide these treatments in some settings. Therapies that target estrogen receptor signaling are efficacious but infrequently used options for treatment of castration-resistant prostate cancer. It is possible that nuances of estrogen receptor (ER) signaling, or selective modulation of ER signaling, might favorably influence outcomes in castration-resistant prostate cancer. Expression of ERs and their variants has been investigated in other cancers such as breast. Constitutively activating gene alterations can potentially lead to ER activation and subsequently promote cancer progression. The identification of these aberrations may help identify cancer phenotypes that are susceptible or resistant to therapies involved in ER signaling. This review outlines the current literature regarding ER signaling in prostate cancer, and provides background for exploration of potentially useful ER signaling biomarkers in advanced prostate cancer.
Collapse
|
6
|
Tian W, Wang ZW, Yuan BM, Bao YG. Calycosin induces apoptosis in osteosarcoma cell line via ERβ‑mediated PI3K/Akt signaling pathways. Mol Med Rep 2020; 21:2349-2356. [PMID: 32236598 PMCID: PMC7185272 DOI: 10.3892/mmr.2020.11039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that calycosin, a natural phytoestrogen which is structurally similar to estrogen, inhibits proliferation and induces apoptosis in estrogen-dependent cancer types via the estrogen receptor (ER)β-induced inhibition of PI3K/Akt. Therefore, the aims of the present study were to investigate the effects of calycosin on human osteosarcoma (OS), and to examine the molecular mechanisms associated with ERβ. Human OS MG-63 cells were treated with various concentrations of calycosin, and MTT and flow cytometry assays were used to assess the effects of calycosin on cellular proliferation and apoptosis. In addition, protein expression levels of ERβ, phosphorylated (p)-PI3K, p-Akt, cleaved poly (ADP-ribose) polymerase 1 (PARP) and cleaved caspase-3 were evaluated by western blot analysis. The present results suggested that calycosin inhibited proliferation and induced apoptosis in MG-63 cells. Furthermore, increased ERβ expression was detected in OS MG-63 cells treated with calycosin, and an ERβ inhibitor (PHTPP) reversed calycosin-induced cytotoxicity and apoptosis. Moreover, phosphorylation levels of PI3K and Akt were significantly downregulated after calycosin treatment, whereas PHTPP reversed their phosphorylation. ERβ-mediated PI3K/Akt downstream signaling pathways were found to influence the activity of poly (ADP-ribose) polymerase 1 and caspase-3. Thus, the present results indicated that calycosin inhibited proliferation and induced apoptosis in OS MG-63 cells, and that these effects were mediated by ERβ-dependent inhibition of the PI3K/Akt pathways.
Collapse
Affiliation(s)
- Wei Tian
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Zhi-Wei Wang
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Bao-Ming Yuan
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Yong-Ge Bao
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| |
Collapse
|
7
|
Selvaraj D, Muthu S, Kotha S, Siddamsetty RS, Andavar S, Jayaraman S. Syringaresinol as a novel androgen receptor antagonist against wild and mutant androgen receptors for the treatment of castration-resistant prostate cancer: molecular docking, in-vitro and molecular dynamics study. J Biomol Struct Dyn 2020; 39:621-634. [PMID: 31928160 DOI: 10.1080/07391102.2020.1715261] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phytoestrogens are dietary estrogens having similar structure as of estrogen. Some of these phytoestrogens are androgen receptor (AR) antagonists and exhibit preventive role in the prostate cancer. However, in androgen-independent prostate cancer (AIPC) the ARs were mutated (T877A, W741L, F876L, etc.) and these mutant ARs convert the antagonist to agonist. Our aim in this study is to find phytoestrogens that could function as an antagonist with wild and mutant ARs. The phytoestrogens were analyzed for binding affinity with wild and mutant ARs in agonist and antagonist conformations. The point mutations were carried out using Chimera. The antagonist AR conformation was modeled using Modeller. We hypothesize that the compounds having binding affinity with agonist AR conformation could not function as a full or pure antagonist. Most of the phytoestrogens have binding affinity with agonist AR conformation contradicting previous results. For example, genistein which is a widely studied isoflavone has known AR antagonist property. However, in our study, it had good binding affinity with agonist AR conformation. Hence, to confirm our hypothesis, we tested genistein in LNCaP (T877A mutant AR) cells by qPCR studies. The genistein functioned as an antagonist only in the presence of an androgen indicting a partial agonist type of activity. The in-vitro results supported our docking hypothesis. We applied this principle and found syringaresinol could function as an antagonist with wild and mutated ARs. Further, we carried out molecular dynamics for the hit molecule to confirm its antagonist binding mode with mutant AR.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Santhoshkumar Muthu
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamilnadu, India
| | - Satvik Kotha
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sasikumar Andavar
- Department of Chemistry, Anthem Biosciences Pvt. Ltd., Bengaluru, Karnataka, India
| | - Saravanan Jayaraman
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| |
Collapse
|
8
|
Pejčić T, Tosti T, Džamić Z, Gašić U, Vuksanović A, Dolićanin Z, Tešić Ž. The Polyphenols as Potential Agents in Prevention and Therapy of Prostate Diseases. Molecules 2019; 24:molecules24213982. [PMID: 31689909 PMCID: PMC6864651 DOI: 10.3390/molecules24213982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023] Open
Abstract
In recent years, the progress of science and medicine greatly has influenced human life span and health. However, lifestyle habits, like physical activity, smoking cessation, moderate alcohol consumption, diet, and maintaining a normal body weight represent measures that greatly reduce the risk of various diseases. The type of diet is very important for disease development. Numerous epidemiological clinical data confirm that longevity is linked to predominantly plant-based diets and it is related to a long life; whereas the western diet, rich in red meat and fats, increases the risk of oxidative stress and thus the risk of developing various diseases and pre-aging. This review is focused on the bioavailability of polyphenols and the use of polyphenols for the prevention of prostate diseases. Special focus in this paper is placed on the isoflavonoids and flavan-3-ols, subgroups of polyphenols, and their protective effects against the development of prostate diseases.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| | - Zoran Džamić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Aleksandar Vuksanović
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Zana Dolićanin
- Department for Biomedical Sciences, State University at Novi Pazar, 36300 Novi Pazar, Serbia.
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|
9
|
Abdel-Aleem GA, Shafik NM, El-Magd MA, Mohamed DA. Soya bean rich diet is associated with adult male rat aggressive behavior: relation to RF amide-related peptide 3-aromatase-neuroestrogen pathway in the brain. Metab Brain Dis 2019; 34:1103-1115. [PMID: 31134480 DOI: 10.1007/s11011-019-00431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Relation between soya bean (SB) consumption and aggressive behavior has not been elucidated yet. Thus, this study was conducted to investigate the effect of large amount of SB consumption on adult male rats' aggressive behavior through investigating changes in the expression of gonadotropin-inhibitory hormone/ RF amide-related peptide 3 (GnIH/RFRP3), neuropeptide FF receptor, cytochrome P450, family 19, subfamily A, polypeptide 1 (Cyp19A1), estrogen receptors α and β and the levels of neuroestrogen, dopamine, glutamate and testosterone as well as aromatase activity in the brain. Adult male rats were divided into three equal groups: group I, control group, received standard diet; group II and group III received 25% and 50% SB of their standard diet contents, respectively, for 12 weeks. The obtained results showed that feeding male rats with large amount of SB could induce aggressive behavior in a dose dependant manner possibly through inhibition of brain GnIH/RFRP-aromatase-neuroestrogen pathway. These effects may be through decreasing aromatase activity, neuroestrogen concentration, Cyp19A1 and ER β mRNA levels and increasing ER α mRNA levels and immunostaining as well as testosterone, dopamine and glutamate levels in the brain. These findings also provide further support for the inhibitory role of RFRP3 on aggressive behavior of male rats. These data may open new avenues for the potential harmful effects of consumption large amounts of SB rich food on humans.
Collapse
Affiliation(s)
- Ghada A Abdel-Aleem
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt, Tanta, Egypt
| | - Noha M Shafik
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt, Tanta, Egypt.
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Darin A Mohamed
- Department of Histopathology, Faculty of Medicine, Tanta University, Egypt, Tanta, Egypt
| |
Collapse
|
10
|
ZFHX3 is indispensable for ERβ to inhibit cell proliferation via MYC downregulation in prostate cancer cells. Oncogenesis 2019; 8:28. [PMID: 30979864 PMCID: PMC6461672 DOI: 10.1038/s41389-019-0138-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022] Open
Abstract
Both estrogen receptor 2 (ESR2, also known as estrogen receptor beta (ERβ)) and the zinc-finger homeobox 3 (ZFHX3, also known as ATBF1 for AT motif-binding factor 1) modulate prostate development and suppress prostatic tumorigenesis in mice. ZFHX3 is integral to proper functions of ESR1 (i.e., estrogen receptor alpha (ERα)), which belongs to the same family of proteins as ESR2, but is hardly expressed in prostate epithelial cells. It is not clear how ZFHX3 suppresses prostatic tumorigenesis. In this study, we investigated whether ZFHX3 and ERβ functionally interact with each other in the suppression of prostatic tumorigenesis. In two androgen receptor (AR)-positive prostate cancer cell lines, C4-2B and LNCaP, we first validated ERβ’s tumor suppressor activity indicated by the inhibition of cell proliferation and repression of MYC expression. We found that loss of ZFHX3 increased cell proliferation and MYC expression, and downregulation of MYC was necessary for ZFHX3 to inhibit cell proliferation in the same cell lines. Importantly, loss of ZFHX3 prevented ERβ from suppressing cell proliferation and repressing MYC transcription. Biochemically, ERβ and ZFHX3 physically interacted with each other and they both occupied the same region of the common MYC promoter, even though ZFHX3 also bound to another region of the MYC promoter. Higher levels of ZFHX3 and ERβ in human prostate cancer tissue samples correlated with better patient survival. These findings establish MYC repression as a mechanism for ZFHX3’s tumor suppressor activity and ZFHX3 as an indispensable factor for ERβ’s tumor suppressor activity in prostate cancer cells. Our data also suggest that intact ZFHX3 function is required for using ERβ-selective agonists to effectively treat prostate cancer.
Collapse
|
11
|
Estrogens and prostate cancer. Prostate Cancer Prostatic Dis 2018; 22:185-194. [PMID: 30131606 DOI: 10.1038/s41391-018-0081-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/30/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hormonal influences such as androgens and estrogens are known contributors in the development and progression of prostate cancer (CaP). While much of the research to the hormonal nature of CaP has focused on androgens, estrogens also have critical roles in CaP development, physiology as well as a potential therapeutic intervention. METHODS In this review, we provide a critical literature review of the current basic science and clinical evidence for the interaction between estrogens and CaP. RESULTS Estrogenic influences in CaP include synthetic, endogenous, fungi and plant-derived compounds, and represent a family of sex hormones, which cross hydrophobic cell membranes and bind to membrane-associated receptors and estrogen receptors that localize to the nucleus triggering changes in gene expression in various organ systems. CONCLUSIONS Estrogens represent a under-recognized contributor in CaP development and progression. Further research in this topic may provide opportunities for identification of environmental influencers as well as providing novel therapeutic targets in the treatment of CaP.
Collapse
|
12
|
Campos MS, Ribeiro NCS, de Lima RF, Santos MB, Vilamaior PSL, Regasini LO, Biancardi MF, Taboga SR, Santos FCA. Anabolic effects of chrysin on the ventral male prostate and female prostate of adult gerbils (Meriones unguiculatus). Reprod Fertil Dev 2018; 30:1180-1191. [DOI: 10.1071/rd17456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/04/2018] [Indexed: 11/23/2022] Open
Abstract
Chrysin is a bioflavonoid found in fruits, flowers, tea, honey and wine, which has antioxidant, anti-inflammatory, antiallergic and anticarcinogenic properties. This flavone has also been considered as beneficial for reproduction due its testosterone-boosting potential. Thus, the aim of this study was to evaluate the effects of chrysin on the prostate and gonads of male and female adult gerbils. In addition, a comparative analysis of the effects of testosterone on these same organs was conducted. Ninety-day-old male and female gerbils were treated with chrysin (50 mg kg−1 day−1) or testosterone cypionate (1 mg kg−1 week−1) for 21 days. The ventral male prostate and female prostate were dissected out for morphological, morphometric–stereological and ultrastructural assays. Testes and ovaries were submitted to morphological and morphometric–stereological analyses. Chrysin treatment caused epithelial hyperplasia and stromal remodelling of the ventral male and female prostate. Ultrastructurally, male and female prostatic epithelial cells in the chrysin group presented marked development of the organelles involved in the biosynthetic–secretory pathway, whereas cellular toxicity was observed only in female glands. Chrysin preserved normal testicular morphology and increased the number of growing ovarian follicles. Comparatively, testosterone treatment was detrimental to the prostate and gonads, since foci of prostatic intraepithelial neoplasia and gonadal degeneration were observed in both sexes. Thus, under the experimental conditions of this study, chrysin was better tolerated than testosterone in the prostate and gonads.
Collapse
|
13
|
Gonzalez-Menendez P, Hevia D, Mayo JC, Sainz RM. The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas? Int J Cancer 2017; 142:2414-2424. [DOI: 10.1002/ijc.31165] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Pedro Gonzalez-Menendez
- Department of Morphology and Cell Biology; Redox Biology Unit, University Institute of Oncology of Asturias (IUOPA). University of Oviedo. Facultad de Medicina.; Oviedo Spain
| | - David Hevia
- Department of Morphology and Cell Biology; Redox Biology Unit, University Institute of Oncology of Asturias (IUOPA). University of Oviedo. Facultad de Medicina.; Oviedo Spain
| | - Juan C. Mayo
- Department of Morphology and Cell Biology; Redox Biology Unit, University Institute of Oncology of Asturias (IUOPA). University of Oviedo. Facultad de Medicina.; Oviedo Spain
| | - Rosa M. Sainz
- Department of Morphology and Cell Biology; Redox Biology Unit, University Institute of Oncology of Asturias (IUOPA). University of Oviedo. Facultad de Medicina.; Oviedo Spain
| |
Collapse
|
14
|
Gehrig J, Kaulfuß S, Jarry H, Bremmer F, Stettner M, Burfeind P, Thelen P. Prospects of estrogen receptor β activation in the treatment of castration-resistant prostate cancer. Oncotarget 2017; 8:34971-34979. [PMID: 28380417 PMCID: PMC5471027 DOI: 10.18632/oncotarget.16496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/08/2017] [Indexed: 12/26/2022] Open
Abstract
Advanced prostate cancer can develop into castration-resistant prostate cancer (CRPC). This process is mediated either by intratumoral ligand synthesis or by mutations or aberrations of the androgen receptor (AR) or its cofactors. To date, no curative therapy for CRPC is available, as AR-targeted therapies eventually result in the development of resistance. The human prostate cancer cell line VCaP (vertebral cancer of the prostate) overexpresses AR and its splice variants (ARVs) as a mechanism of resistance to androgen-deprivation therapy (ADT) of external and intratumoral origin. In the present study, we demonstrate that stimulating estrogen receptor β activity with the specific agonist 8β-VE2 in VCaP cells in successive stages of ADT induced a time- and dose-dependent decrease in cell survival and an increase in apoptosis. Furthermore, 8β-VE2 treatment reduced the overexpression of the AR as well as ARVs in VCaP cells under maximum ADT. Our results indicate that decreased survival of the androgen-dependent CRPC cells employing apoptosis together with the regulative effect on AR expression could have beneficial effects over current AR-targeting therapies.
Collapse
Affiliation(s)
- Julia Gehrig
- Institute of Human Genetics, University Medical Center Goettingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Goettingen, Germany
| | - Hubertus Jarry
- Department of Experimental Endocrinology, University Medical Center Goettingen, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Goettingen, Germany
| | - Mark Stettner
- Department of Neurology, University of Essen, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Center Goettingen, Germany
| | - Paul Thelen
- Department of Urology, University Medical Center Goettingen, Germany
| |
Collapse
|
15
|
Garg S, Lule VK, Malik RK, Tomar SK. Soy Bioactive Components in Functional Perspective: A Review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1136936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sheenam Garg
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhao Kisanrao Lule
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Ravinder Kumar Malik
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sudhir Kumar Tomar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
16
|
Karamouzis MV, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Targeting Androgen/Estrogen Receptors Crosstalk in Cancer. Trends Cancer 2016; 2:35-48. [PMID: 28741499 DOI: 10.1016/j.trecan.2015.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023]
Abstract
The actions of estrogens are mediated by estrogen receptors, ERα and ERβ. Recent genomic landscaping of ERα- and ERβ-binding sites has revealed important distinctions regarding their transcriptional activity. ERβ and its isoforms have been correlated with endocrine treatment responsiveness in breast tumors, while post-translational modifications, receptor dimerization patterns, and subcellular localization are increasingly recognized as crucial modulators in prostate carcinogenesis. Androgen receptor (AR) is essential for the development and progression of prostate cancer as well as of certain breast cancer types. The balance between the activity of these two hormone receptors and their molecular interactions in different clinical settings is influenced by several coregulators. This comprises a dynamic regulatory network enhancing or limiting the activity of AR-directed treatments in breast and prostate tumorigenesis. In this review, we discuss the molecular background regarding the therapeutic targeting of androgen/estrogen receptor crosstalk in breast and prostate cancer.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Kostas A Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
17
|
Sareddy GR, Vadlamudi RK. Cancer therapy using natural ligands that target estrogen receptor beta. Chin J Nat Med 2015; 13:801-807. [PMID: 26614454 PMCID: PMC4896163 DOI: 10.1016/s1875-5364(15)30083-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 02/07/2023]
Abstract
Estrogen receptor beta (ERβ) is one of the two key receptors (ERα, ERβ) that facilitate biological actions of 17β-estradiol (E2). ERβ is widely expressed in many tissues, and its expression is reduced or lost during progression of many tumors. ERβ facilitates estrogen signaling by both genomic (classical and non-classical) and extra-nuclear signaling. Emerging evidence suggests that ERβ functions as a tissue-specific tumor suppressor with anti-proliferative actions. Recent studies have identified a number of naturally available selective ERβ agonists. Targeting ERβ using its naturally available ligands is an attractive approach for treating and preventing cancers. This review presents the beneficial actions of ERβ signaling and clinical utility of several natural ERβ ligands as potential cancer therapy.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
18
|
Lu X, Zhao J, Li T, Huang M, Liang J, Wei W. 5,7-Dihydroxy-4'-methoxyisoflavone induces apoptosis by inhibiting the ERK and Akt pathways in human osteosarcoma cells. Connect Tissue Res 2015; 56:59-64. [PMID: 25363142 DOI: 10.3109/03008207.2014.984064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phytoestrogens are known to prevent tumor progression by inhibiting proliferation and inducing apoptosis in cancer cells. In this study we determine the effect of 5,7-dihydroxy-4'-methoxyisoflavone, a phytoestrogen, on proliferation and apoptosis in the human osteosarcoma (OS) cell line U2OS. 5,7-Dihydroxy-4'-methoxyisoflavone dose-dependently inhibited proliferation in U2OS cells, which was accompanied by an increase of early apoptotic cells. However, 5,7-dihydroxy-4'-methoxyisoflavone had little effect on the growth and apoptosis of normal human skin fibroblast (HSF) cells. This may indicate that 5,7-dihydroxy-4'-methoxyisoflavone can selectively inhibit the proliferation of cancerous cells. Meanwhile, 5,7-dihydroxy-4'-methoxyisoflavone decreased the protein levels of phosphorylated ERK and Akt. Inactivation of these pathways was confirmed by upregulation of Bax expression and downregulation of Bcl-2 expression. Phosphorylated Akt protein levels were decreased in HSF cells only at a high concentration (80 μM) of 5,7-dihydroxy-4'-methoxyisoflavone. Together, we suggest that 5,7-dihydroxy-4'-methoxyisoflavone promotes cell death of human OS cells U2OS by induction of apoptosis, which is associated with the inhibition of ERK and Akt signaling. Thus, 5,7-dihydroxy-4'-methoxyisoflavone may have less toxicity compared to normal tissue and could be a potential therapy for OS.
Collapse
|
19
|
Jargin SV. Soy and phytoestrogens: possible side effects. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2014; 12:Doc18. [PMID: 25587246 PMCID: PMC4270274 DOI: 10.3205/000203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/13/2014] [Indexed: 12/15/2022]
Abstract
Phytoestrogens are present in certain edible plants being most abundant in soy; they are structurally and functionally analogous to the estrogens. Phytoestrogens have been applied for compensation of hormone deficiency in the menopause. At the same time, soy products are used in infant food and other foodstuffs. Furthermore, soy is applied as animal fodder, so that residual phytoestrogens and their active metabolites such as equol can remain in meat and influence the hormonal balance of the consumers. There have been only singular reports on modified gender-related behavior or feminization in humans in consequence of soy consumption. In animals, the intake of phytoestrogens was reported to impact fertility, sexual development and behavior. Feminizing effects in humans can be subtle and identifiable only statistically in large populations.
Collapse
|
20
|
Christoforou P, Christopoulos PF, Koutsilieris M. The role of estrogen receptor β in prostate cancer. Mol Med 2014; 20:427-34. [PMID: 25032955 DOI: 10.2119/molmed.2014.00105] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/14/2014] [Indexed: 01/07/2023] Open
Abstract
Although androgen receptor (AR) signaling is the main molecular tool regulating growth and function of the prostate gland, estrogen receptor β (ERβ) is involved in the differentiation of prostatic epithelial cells and numerous antiproliferative actions on prostate cancer cells. However, ERβ splice variants have been associated with prostate cancer initiation and progression mechanisms. ERβ is promising as an anticancer therapy and in the prevention of prostate cancer. Herein, we review the recent experimental findings of ERβ signaling in the prostate.
Collapse
Affiliation(s)
- Paraskevi Christoforou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Gonzalez-Menendez P, Hevia D, Rodriguez-Garcia A, Mayo JC, Sainz RM. Regulation of GLUT transporters by flavonoids in androgen-sensitive and -insensitive prostate cancer cells. Endocrinology 2014; 155:3238-50. [PMID: 24932809 DOI: 10.1210/en.2014-1260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cells show different metabolic requirements from normal cells. In prostate cancer, particularly, glycolytic metabolism differs in androgen-responsive and nonresponsive cells. In addition, some natural compounds with antiproliferative activities are able to modify glucose entry into cells by either modulating glucose transporter (GLUT) expression or by altering glucose binding. The aim of this work was to study the regulation of some GLUTs (GLUT1 and GLUT4) in both androgen-sensitive (LNCaP) and -insensitive (PC-3) prostate cancer cells by 4 structurally different flavonoids (ie, genistein, phloretin, apigenin, and daidzein). Glucose uptake was measured using nonradiolabeled 2-deoxyglucose. The evaluation of protein levels as well as subcellular distribution of GLUT1/4 were analyzed by Western blot and immunocytochemistry, respectively. Androgen-insensitive LNCaP-R and androgen-sensitive PC-3-AR cells were used to study the effect of androgen signaling. Additionally, a docking simulation was employed to compare interactions between flavonoids and XylE, a bacterial homolog of GLUT1 to -4. Results show for the first time the presence of functionally relevant GLUT4 in prostate cancer cells. Furthermore, differences in GLUT1 and GLUT4 levels and glucose uptake were found, without differences on subcellular distribution, after incubation with flavonoids. Docking simulation showed that all compounds interact with the same location of transporters. More importantly, differences between androgen-sensitive and -insensitive prostate cancer cells were found in both GLUT protein levels and glucose uptake. Thus, phenotypic characteristics of prostate cancer cells are responsible for the different effects of these flavonoids in glucose uptake and in GLUT expression rather than their structural differences, with the most effective in reducing cell growth being the highest in modifying glucose uptake and GLUT levels.
Collapse
Affiliation(s)
- Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Instituto Universitario de Oncologia del Principado de Asturias, Universidad de Oviedo, Facultad de Medicina, 33006 Oviedo, Spain
| | | | | | | | | |
Collapse
|
22
|
Abstract
Prostate cancer is the commonest, non-cutaneous cancer in men. At present, there is no cure for the advanced, castration-resistant form of the disease. Estrogen has been shown to be important in prostate carcinogenesis, with evidence resulting from epidemiological, cancer cell line, human tissue and animal studies. The prostate expresses both estrogen receptor alpha (ERA) and estrogen receptor beta (ERB). Most evidence suggests that ERA mediates the harmful effects of estrogen in the prostate, whereas ERB is tumour suppressive, but trials of ERB-selective agents have not translated into improved clinical outcomes. The role of ERB in the prostate remains unclear and there is increasing evidence that isoforms of ERB may be oncogenic. Detailed study of ERB and ERB isoforms in the prostate is required to establish their cell-specific roles, in order to determine if therapies can be directed towards ERB-dependent pathways. In this review, we summarise evidence on the role of ERB in prostate cancer and highlight areas for future research.
Collapse
Affiliation(s)
- Adam W Nelson
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| | - Wayne D Tilley
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| | - David E Neal
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| | - Jason S Carroll
- Cancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UKCancer Research UKCambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UKDepartment of UrologyAddenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UKDame Roma Mitchell Cancer Research LaboratoriesFaculty of Health Sciences, School of Medicine, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000, AustraliaDepartment of OncologyUniversity of Cambridge, Cambridge CB2 2QQ, UK
| |
Collapse
|
23
|
Low body mass index is associated with adverse oncological outcomes following radical prostatectomy in Korean prostate cancer patients. Int Urol Nephrol 2014; 46:1935-40. [PMID: 24817520 DOI: 10.1007/s11255-014-0729-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this study was to determine the impact of obesity on clinicopathological features and biochemical recurrence (BCR) following radical prostatectomy (RP) in Korean prostate cancer (PCa) patients. METHODS A single-institutional retrospective analysis was performed on 880 PCa patients treated by RP without neoadjuvant therapy between July 2005 and December 2011. Patients were stratified according to body mass index (BMI) standards for Asian populations: obese (BMI ≥25 kg/m(2)), overweight (BMI 23-24.9 kg/m(2)), or normal weight (BMI <23 kg/m(2)). For analysis, overweight and obese patients were combined (n = 592, BMI ≥23 kg/m(2)) and compared with normal weight patients (n = 288, BMI <23 kg/m(2)). BCR was defined as prostate-specific antigen (PSA) ≥0.2 ng/ml following RP. RESULTS Normal weight patients tended to be classified into the higher D'Amico risk category with smaller prostate volumes compared with obese and overweight patients. Normal weight patients had higher pathological Gleason scores and were at higher risk of BCR during the mean follow-up of 58.2 months. This translated to a higher 5-year BCR-free survival rate for obese and overweight patients compared with normal weight patients (77.8 vs. 70.3 %; p = 0.017). On multiple Cox-proportional hazards regression analysis incorporating variables of BMI category, PSA, positive surgical margins, pathological T stage, and Gleason score, higher BMI category remained a significant predictor of a lower risk of BCR (HR = 0.634, p = 0.028). CONCLUSIONS Obese and overweight Korean PCa patients have lower Gleason scores and a reduced risk of BCR compared with normal weight patients. These findings suggest that body fat influences pathological features and oncologic outcomes of PCa.
Collapse
|