1
|
Jerves Serrano T, Gold J, Cooper JA, Church HJ, Tylee KL, Wu HY, Kim SY, Stepien KM. Hepatomegaly and Splenomegaly: An Approach to the Diagnosis of Lysosomal Storage Diseases. J Clin Med 2024; 13:1465. [PMID: 38592278 PMCID: PMC10932313 DOI: 10.3390/jcm13051465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.
Collapse
Affiliation(s)
| | - Jessica Gold
- Division of Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - James A. Cooper
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Heather J. Church
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Karen L. Tylee
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Hoi Yee Wu
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Karolina M. Stepien
- Salford Royal Organization, Northern Care Alliance NHS Foundation Trust, Adult Inherited Metabolic Diseases Department, Salford M6 8HD, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Carmona CJ, German-Morales M, Elizondo D, Ruiz-Rodado V, Grootveld M. Urinary Metabolic Distinction of Niemann-Pick Class 1 Disease through the Use of Subgroup Discovery. Metabolites 2023; 13:1079. [PMID: 37887404 PMCID: PMC10608721 DOI: 10.3390/metabo13101079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
In this investigation, we outline the applications of a data mining technique known as Subgroup Discovery (SD) to the analysis of a sample size-limited metabolomics-based dataset. The SD technique utilized a supervised learning strategy, which lies midway between classificational and descriptive criteria, in which given the descriptive property of a dataset (i.e., the response target variable of interest), the primary objective was to discover subgroups with behaviours that are distinguishable from those of the complete set (albeit with a differential statistical distribution). These approaches have, for the first time, been successfully employed for the analysis of aromatic metabolite patterns within an NMR-based urinary dataset collected from a small cohort of patients with the lysosomal storage disorder Niemann-Pick class 1 (NPC1) disease (n = 12) and utilized to distinguish these from a larger number of heterozygous (parental) control participants. These subgroup discovery strategies discovered two different NPC1 disease-specific metabolically sequential rules which permitted the reliable identification of NPC1 patients; the first of these involved 'normal' (intermediate) urinary concentrations of xanthurenate, 4-aminobenzoate, hippurate and quinaldate, and disease-downregulated levels of nicotinate and trigonelline, whereas the second comprised 'normal' 4-aminobenzoate, indoxyl sulphate, hippurate, 3-methylhistidine and quinaldate concentrations, and again downregulated nicotinate and trigonelline levels. Correspondingly, a series of five subgroup rules were generated for the heterozygous carrier control group, and 'biomarkers' featured in these included low histidine, 1-methylnicotinamide and 4-aminobenzoate concentrations, together with 'normal' levels of hippurate, hypoxanthine, quinolinate and hypoxanthine. These significant disease group-specific rules were consistent with imbalances in the combined tryptophan-nicotinamide, tryptophan, kynurenine and tyrosine metabolic pathways, along with dysregulations in those featuring histidine, 3-methylhistidine and 4-hydroxybenzoate. In principle, the novel subgroup discovery approach employed here should also be readily applicable to solving metabolomics-type problems of this nature which feature rare disease classification groupings with only limited patient participant and sample sizes available.
Collapse
Affiliation(s)
- Cristóbal J. Carmona
- Andalusian Research Institute on Data Science and Computational Intelligence, University of Jaen, 23071 Jaen, Spain; (C.J.C.); (M.G.-M.)
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Manuel German-Morales
- Andalusian Research Institute on Data Science and Computational Intelligence, University of Jaen, 23071 Jaen, Spain; (C.J.C.); (M.G.-M.)
| | - David Elizondo
- School of Computer Science and Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Victor Ruiz-Rodado
- Pivotal Contract Research Organisation, Community of Madrid, Calle Gobelas 19, La Florida, 28023 Madrid, Spain;
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| |
Collapse
|
3
|
Poli G, Leoni V, Biasi F, Canzoneri F, Risso D, Menta R. Oxysterols: From redox bench to industry. Redox Biol 2022; 49:102220. [PMID: 34968886 PMCID: PMC8717233 DOI: 10.1016/j.redox.2021.102220] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
More and more attention is nowadays given to the possible translational application of a great number of biochemical and biological findings with the involved molecules. This is also the case of cholesterol oxidation products, redox molecules over the last years deeply investigated for their implication in human pathophysiology. Oxysterols of non-enzymatic origin, the excessive increase of which in biological fluids and tissues is of toxicological relevance for their marked pro-oxidant and pro-inflammatory properties, are increasingly applied in clinical biochemistry as molecular markers in the diagnosis and monitoring of several human and veterinary diseases. Conversely, oxysterols of enzymatic origin, the production of which is commonly under physiological regulation, could be considered and tested as promising pharmaceutical agents because of their antiviral, pro-osteogenic and antiadipogenic properties of some of them. Very recently, the quantification of oxysterols of non-enzymatic origin has been adopted in a systematic way to evaluate, monitor and improve the quality of cholesterol-based food ingredients, that are prone to auto-oxidation, as well as their industrial processing and the packaging and the shelf life of the finished food products. The growing translational value of oxysterols is here reviewed in its present and upcoming applications in various industrial fields.
Collapse
Affiliation(s)
- Giuseppe Poli
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio, ASST Brianza, School of Medicine and Surgery, University of Milano Bicocca, 20126, Milan, Italy
| | - Fiorella Biasi
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy
| | | | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| | - Roberto Menta
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| |
Collapse
|
4
|
Jiang X, Ory DS. Advancing Diagnosis and Treatment of Niemann-Pick C disease through Biomarker Discovery. EXPLORATION OF NEUROPROTECTIVE THERAPY 2021; 1:146-158. [PMID: 35356760 PMCID: PMC8963791 DOI: 10.37349/ent.2021.00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/05/2021] [Indexed: 05/30/2023]
Abstract
Niemann-Pick C is a rare neurodegenerative, lysosomal storage disease caused by accumulation of unesterified cholesterol. Diagnosis of the disease is often delayed due to its rarity, the heterogeneous presentation and the early non-specific symptoms. The discovery of disease-specific biomarkers - cholestane-3β,5α,6β-triol (C-triol), trihydroxycholanic acid glycinate (TCG) and N-palmitoyl-O-phosphocholineserine (PPCS, initially referred to as lysoSM-509) - has led to development of non-invasive, blood-based diagnostics. Dissemination of these rapid, sensitive, and specific clinical assays has accelerated diagnosis. Moreover, the superior receiver operating characteristic of the TCG bile acid biomarker and its detection in dried blood spots has also facilitated development of a newborn screen for NPC, which is currently being piloted in New York state. The C-triol, TCG and PPCS biomarkers have also proven useful for monitoring treatment response in peripheral tissues, but are uninformative with respect to treatment efficacy in the central nervous system (CNS). A major gap for the field is the lack of a validated, non-invasive biomarker to monitor the course of disease and CNS response to therapy.
Collapse
Affiliation(s)
- Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
5
|
Rodriguez-Gil JL, Baxter LL, Watkins-Chow DE, Johnson NL, Davidson CD, Carlson SR, Incao AA, Wallom KL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ. Transcriptome of HPβCD-treated Niemann-pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Hum Mol Genet 2021; 30:2456-2468. [PMID: 34296265 DOI: 10.1093/hmg/ddab194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a compound currently under investigation in clinical trials. A total of 485 HPβCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of serum from Npc1m1N null mice treated with HPβCD and adeno-associated virus (AAV) gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPβCD treatment.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health
| | - Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Cristin D Davidson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Steven R Carlson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Arturo A Incao
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | | | | | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | | | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| |
Collapse
|
6
|
Sidhu R, Kell P, Dietzen DJ, Farhat NY, Do AND, Porter FD, Berry-Kravis E, Reunert J, Marquardt T, Giugliani R, Lourenço CM, Wang RY, Movsesyan N, Plummer E, Schaffer JE, Ory DS, Jiang X. Application of a glycinated bile acid biomarker for diagnosis and assessment of response to treatment in Niemann-pick disease type C1. Mol Genet Metab 2020; 131:405-417. [PMID: 33257258 PMCID: PMC8139135 DOI: 10.1016/j.ymgme.2020.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023]
Abstract
Niemann-Pick disease type C (NPC) is a neurodegenerative disease in which mutation of NPC1 or NPC2 gene leads to lysosomal accumulation of unesterified cholesterol and sphingolipids. Diagnosis of NPC disease is challenging due to non-specific early symptoms. Biomarker and genetic tests are used as first-line diagnostic tests for NPC. In this study, we developed a plasma test based on N-(3β,5α,6β-trihydroxy-cholan-24-oyl)glycine (TCG) that was markedly increased in the plasma of human NPC1 subjects. The test showed sensitivity of 0.9945 and specificity of 0.9982 to differentiate individuals with NPC1 from NPC1 carriers and controls. Compared to other commonly used biomarkers, cholestane-3β,5α,6β-triol (C-triol) and N-palmitoyl-O-phosphocholine (PPCS, also referred to as lysoSM-509), TCG was equally sensitive for identifying NPC1 but more specific. Unlike C-triol and PPCS, TCG showed excellent stability and no spurious generation of marker in the sample preparation or aging of samples. TCG was also elevated in lysosomal acid lipase deficiency (LALD) and acid sphingomyelinase deficiency (ASMD). Plasma TCG was significantly reduced after intravenous (IV) 2-hydroxypropyl-β-cyclodextrin (HPβCD) treatment. These results demonstrate that plasma TCG was superior to C-triol and PPCS as NPC1 diagnostic biomarker and was able to evaluate the peripheral treatment efficacy of IV HPβCD treatment.
Collapse
Affiliation(s)
- Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Y Farhat
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - An Ngoc Dang Do
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - Janine Reunert
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Roberto Giugliani
- Department of Genetics, UFRGS, Medical Genetics Service, HCPA, BioDiscovery Laboratory, HCPA, Hospital de Clínicas de Porto Alegre, National Institute of Population Medical Genetics - INAGEMP, Porto Alegre, RS 90035-903, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina - Centro Universitario Estácio de Ribeirão Preto, Rua Abrahão Issa Halach, 980 - Ribeirânia, Ribeirão Preto, - SP, Brazil
| | - Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA; Department of Pediatrics, University of California-Irvine School of Medicine, Orange, CA 92868, USA
| | - Nina Movsesyan
- Research Institute, CHOC Children's Hospital, Orange, CA 92868, USA
| | - Ellen Plummer
- Asante Pediatric Hematology and Oncology, Medford, OR, 97504, USA
| | - Jean E Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clin Chim Acta 2020; 509:195-209. [PMID: 32561345 DOI: 10.1016/j.cca.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) are characterized by the accumulation of specific disease substrates inside the lysosomes of various cells, eventually leading to the deterioration of cellular function and multisystem organ damage. With the continuous discovery and validation of novel and advanced therapies for most LSDs, there is an urgent need to discover more versatile and clinically relevant biomarkers. The utility of these biomarkers should ideally extend beyond the screening and diagnosis of LSDs to the evaluation of disease severity and monitoring of therapy. Metabolomic and proteomic approaches provide the means to the discovery and validation of such novel biomarkers. This is achieved mainly through the application of various mass spectrometric techniques to common and easily accessible biological samples, such as plasma, urine and dried blood spots. In this review, we tried to summarize the complexity of the lysosomal disorders phenotypes, their current diagnostic and therapeutic approaches, the various techniques supporting metabolomic and proteomic studies and finally we tried to explore the newly discovered biomarkers for most LSDs and their reported clinical values.
Collapse
|
8
|
Eskes ECB, Sjouke B, Vaz FM, Goorden SMI, van Kuilenburg ABP, Aerts JMFG, Hollak CEM. Biochemical and imaging parameters in acid sphingomyelinase deficiency: Potential utility as biomarkers. Mol Genet Metab 2020; 130:16-26. [PMID: 32088119 DOI: 10.1016/j.ymgme.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Acid Sphingomyelinase Deficiency (ASMD), or Niemann-Pick type A/B disease, is a rare lipid storage disorder leading to accumulation of sphingomyelin and its precursors primarily in macrophages. The disease has a broad phenotypic spectrum ranging from a fatal infantile form with severe neurological involvement (the infantile neurovisceral type) to a primarily visceral form with different degrees of pulmonary, liver, spleen and skeletal involvement (the chronic visceral type). With the upcoming possibility of treatment with enzyme replacement therapy, the need for biomarkers that predict or reflect disease progression has increased. Biomarkers should be validated for their use as surrogate markers of clinically relevant endpoints. In this review, clinically important endpoints as well as biochemical and imaging markers of ASMD are discussed and potential new biomarkers are identified. We suggest as the most promising biomarkers that may function as surrogate endpoints in the future: diffusion capacity measured by spirometry, spleen volume, platelet count, low-density lipoprotein cholesterol, liver fibrosis measured with a fibroscan, lysosphingomyelin and walked distance in six minutes. Currently, no biomarkers have been validated. Several plasma markers of lipid-laden cells, fibrosis or inflammation are of high potential as biomarkers and deserve further study. Based upon current guidelines for biomarkers, recommendations for the validation process are provided.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Cooper JA, Church HJ, Wu HY. Cholestane-3β, 5α, 6β-triol: Further insights into the performance of this oxysterol in diagnosis of Niemann-Pick disease type C. Mol Genet Metab 2020; 130:77-86. [PMID: 32178982 DOI: 10.1016/j.ymgme.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/20/2022]
Abstract
In recent years the oxysterol species cholestane-3β, 5α, 6β-triol (C-triol) has found application as a diagnostic biomarker for Niemann-Pick disease type C. Other studies have described increased C-triol in patients with Niemann-Pick disease type A/B and milder increases in lysosomal acid lipase deficiency (LALD), whereas they note normal C-triol levels in Smith-Lemli-Opitz syndrome (SLOS) and familial hypercholesterolaemia (FH) patients. Herein, we review data collected in our laboratory during method evaluation along with 5 years of routine analysis and present findings which differ from those reported by other groups with respect to LALD, SLOS and FH in particular, whilst providing further evidence regarding the clinical sensitivity and specificity of this biomarker, which are difficult to accurately assess. All of our Wolman disease (severe LALD) patients have demonstrated gross elevations of C-triol at diagnosis, with reduction to normal levels after induction of enzyme replacement therapy. In diagnostic specimens from SLOS patients we observed very low or undetectable C-triol levels whereas in post-therapeutic SLOS patients demonstrated normalised levels; we also describe a homozygous FH patient in which C-triol is significantly elevated. Upon investigation, we found that C-triol was formed artefactually from cholesterol during our sample preparation, i.e. this is a false positive of analytical origin; at present it is unclear whether similar effects occur during sample preparation in other laboratories. Our data demonstrates clinical sensitivity of 100% during routine application to diagnostic specimens; this is in keeping with other estimates, yet in a small proportion of patients diagnosed prior to C-triol measurement, either by Filipin staining of fibroblasts or molecular genetics, we have observed normal C-triol concentrations. Clinical specificity of C-triol alone is 93.4% and 95.3% when performed in conjunction with lysosomal enzymology. These performance statistics are very similar to those achieved with Filipin staining of cultured fibroblasts in the 5 years preceding introduction of C-triol to routine use in our laboratory. It is increasingly apparent to us that although this analyte is a very useful addition to the diagnostic tools available for NPC, with considerable advantages over more invasive and time-consuming methods, the interpretation of results is complex and should be undertaken only in light of clinical details and results of other analyses including enzymology for lysosomal acid lipase and acid sphingomyelinase.
Collapse
Affiliation(s)
- J A Cooper
- Willink Biochemical Genetics Laboratory, Manchester University NHS Foundation Trust, United Kingdom
| | - H J Church
- Willink Biochemical Genetics Laboratory, Manchester University NHS Foundation Trust, United Kingdom
| | - H Y Wu
- Willink Biochemical Genetics Laboratory, Manchester University NHS Foundation Trust, United Kingdom.
| |
Collapse
|
10
|
Sidhu R, Kell P, Dietzen DJ, Farhat NY, Do AND, Porter FD, Berry-Kravis E, Vite CH, Reunert J, Marquardt T, Giugliani R, Lourenço CM, Bodamer O, Wang RY, Plummer E, Schaffer JE, Ory DS, Jiang X. Application of N-palmitoyl-O-phosphocholineserine for diagnosis and assessment of response to treatment in Niemann-Pick type C disease. Mol Genet Metab 2020; 129:292-302. [PMID: 32033912 PMCID: PMC7145728 DOI: 10.1016/j.ymgme.2020.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and treatment efficacy assessment with 2-hydroxypropyl-β-cyclodextrin (HPβCD) in NPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 patients, and CSF PPCS levels were significantly correlated with NPC neurological disease severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical (IT) HPβCD treatment. In an intravenous (IV) HPβCD trial, plasma PPCS in all patients was significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of IV HPβCD treatment.
Collapse
Affiliation(s)
- Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis J Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Y Farhat
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - An Ngoc Dang Do
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - Charles H Vite
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, PA 19104, USA
| | - Janine Reunert
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Roberto Giugliani
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, National Institute of Population Medical Genetics - INAGEMP, Porto Alegre, RS 90035-903, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina - Centro Universitario Estácio de Ribeirão Preto, Rua Abrahão Issa Halach, 980 - Ribeirânia, Ribeirão Preto, SP, Brazil
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA; Department of Pediatrics, University of California-Irvine School of Medicine, Orange, CA 92868, USA
| | - Ellen Plummer
- Asante Pediatric Hematology and Oncology - Medford, Medford, OR, 97504, USA
| | - Jean E Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Sottero B, Rossin D, Staurenghi E, Gamba P, Poli G, Testa G. Omics analysis of oxysterols to better understand their pathophysiological role. Free Radic Biol Med 2019; 144:55-71. [PMID: 31141713 DOI: 10.1016/j.freeradbiomed.2019.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
High amounts of cholesterol have been definitely associated with the pathogenesis of several diseases, including metabolic and neurodegenerative disorders, cardiovascular diseases, and cancer. In all these pathologies the exacerbation of pro-oxidant and inflammatory responses is a consistent feature. In this scenario, species derived from enzymatic and non-enzymatic cholesterol oxidation, namely oxysterols, are strongly suspected to play a primary role. The consideration of these bioactive lipids is therefore helpful in investigating pathological mechanisms and may also acquire clinical value for the diagnosis and treatment of diseases. For this purpose and considering that a great number of oxysterols may be present together in the body, the employment of lipidomics technology certainly represents a powerful strategy for the simultaneous detection and characterization of these compounds in biological specimens. In this review, we will discuss the applicability of the lipidomics approach in the study of the association between oxysterols and diseases.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy.
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Italy
| |
Collapse
|
12
|
Beedasy P, Moodley A, Marais AD. The mind’s eye: A neuro-ophthalmological perspective on Niemann-Pick type C disease. AFRICAN VISION AND EYE HEALTH 2019. [DOI: 10.4102/aveh.v78i1.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a rare autosomal recessive genetic disease caused by mutations in the NPC1 and NPC2 genes with an estimated incidence of 1:120 000 live births. The clinical presentations vary across the ages. Children present with visceral symptoms related to cholesterol accumulation in the liver and adults have predominantly neuropsychiatric features such as dementia. However, vertical supranuclear gaze palsy can be present from the first year of life and is a strong feature in the diagnosis of NPC, which can be confirmed by a skin biopsy. A 36-year-old female with long-standing depression was referred for an evaluation of dystonia. She had progressive cognitive decline, dysarthria, dysphonia, dystonia of the trunk and limbs, ataxia and supranuclear gaze palsy. A similar course of illness affected her brother. Her parents were first cousins. She had positive Filipin stain of fibroblasts cultured from her skin biopsy, confirming the diagnosis of NPC. Miglustat, the approved drug for treatment, was not accessible. She had been on simvastatin since diagnosis, with a poor response, and had ongoing severe cognitive and physical disability. There are few conditions that present with neuropsychiatric symptoms and supranuclear gaze palsy. This patient had been managed as chronic depression with psychosis since her teenage years and her diagnosis was reviewed only when she had developed dystonia. Supranuclear gaze palsy is an early diagnostic clinical clue that could be present from infancy and should be sought in patients with neurocognitive presentations.
Collapse
|
13
|
Degtyareva AV, Proshlyakova TY, Gautier MS, Degtyarev DN, Kamenets EA, Baydakova GV, Rebrikov DV, Zakharova EY. Oxysterol/chitotriosidase based selective screening for Niemann-Pick type C in infantile cholestasis syndrome patients. BMC MEDICAL GENETICS 2019; 20:123. [PMID: 31296176 PMCID: PMC6625024 DOI: 10.1186/s12881-019-0857-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/02/2019] [Indexed: 01/11/2023]
Abstract
Background Niemann-Pick disease type C (NP-C) is an inherited neurodegenerative disease (1 per 100 000 newborns) caused by NPC proteins impairment that leads to unesterified cholesterol accumulation in late endosomal/lysosomal compartments. To date the NP-C diagnostics is usually based on cholesterol detection in fibroblasts using an invasive and time-consuming Filipin staining and we need more arguments to widely introduce oxysterols as a biomarkers in NP-C. Methods Insofar as NP-C represents about 8% of all infant cholestases, in this prospective observational study we tried to re-assess the specificity plasma oxysterol and chitotriosidase as a biochemical screening markers of NP-C in children with cholestasis syndrome of unknown origin. For 108 patients (aged from 2 weeks to 7 years) the levels of cholestane-3β,5α,6β-triol (C-triol) and chitotriosidase (ChT) were measured. For patients with elevated C-triol and/or ChT the NPC1 and NPC2 genes were Sanger-sequenced and 47 additional genes (from the custom liver damage panel) were NGS-sequenced. Results Increased C-triol level (> 50 ng/ml) was detected in 4 (of 108) infants with cholestasis syndrome of unknown origin, with following molecular genetic NP-C diagnosis for one patient. Plasma cholesterol significantly correlates with C-triol (p < 0.05). NGS of high C-triol infants identified three patients with mutations in JAG1 (Alagille syndrome) and ABCB11 (Byler disease) genes. Increased ChT activity was detected in 8 (of 108) patients with various aetiologies, including NP-C, Byler disease and biliary atresia. Conclusion Combined analysis of ChT activity and C-triol levels is an effective method for identifying NP-C.
Collapse
Affiliation(s)
- Anna V Degtyareva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Marina S Gautier
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Dmitry N Degtyarev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Denis V Rebrikov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia. .,Pirogov Russian National Research Medical University, Moscow, Russia.
| | | |
Collapse
|
14
|
Sidhu R, Mondjinou Y, Qian M, Song H, Kumar AB, Hong X, Hsu FF, Dietzen DJ, Yanjanin NM, Porter FD, Berry-Kravis E, Vite CH, Gelb MH, Schaffer JE, Ory DS, Jiang X. N-acyl- O-phosphocholineserines: structures of a novel class of lipids that are biomarkers for Niemann-Pick C1 disease. J Lipid Res 2019; 60:1410-1424. [PMID: 31201291 DOI: 10.1194/jlr.ra119000157] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/13/2019] [Indexed: 01/29/2023] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, there is an urgency to improve diagnostics and monitor therapeutic efficacy with biomarkers. In this study, we sought to define the structure of an unknown lipid biomarker for NPC1 with [M + H]+ ion at m/z 509.3351, previously designated as lysoSM-509. The structure of N-palmitoyl-O-phosphocholineserine (PPCS) was proposed for the lipid biomarker based on the results from mass spectrometric analyses and chemical derivatizations. As no commercial standard is available, authentic PPCS was chemically synthesized, and the structure was confirmed by comparison of endogenous and synthetic compounds as well as their derivatives using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PPCS is the most abundant species among N-acyl-O-phosphocholineserines (APCS), a class of lipids that have not been previously detected in biological samples. Further analysis demonstrated that all APCS species with acyl groups ranging from C14 to C24 were elevated in NPC1 plasma. PPCS is also elevated in both central and peripheral tissues of the NPC1 cat model. Identification of APCS structures provide an opportunity for broader exploration of the roles of these novel lipids in NPC1 disease pathology and diagnosis.
Collapse
Affiliation(s)
- Rohini Sidhu
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yawo Mondjinou
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Mingxing Qian
- Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Haowei Song
- Process and Analytical Development, MilliporeSigma, St. Louis, MO 63118
| | - Arun Babu Kumar
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Xinying Hong
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Fong-Fu Hsu
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dennis J Dietzen
- Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole M Yanjanin
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Charles H Vite
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 70736
| | - Michael H Gelb
- Process and Analytical Development, MilliporeSigma, St. Louis, MO 63118
| | - Jean E Schaffer
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Daniel S Ory
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xuntian Jiang
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
15
|
Standard-flow LC and thermal focusing ESI elucidates altered liver proteins in late stage Niemann-Pick, type C1 disease. Bioanalysis 2019; 11:1067-1083. [PMID: 31251104 PMCID: PMC9933893 DOI: 10.4155/bio-2018-0232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: Mass spectrometry (MS)-based proteomics, particularly with the development of nano-ESI, have been invaluable to our understanding of altered proteins related to human disease. Niemann-Pick, type C1 (NPC1) disease is a fatal, autosomal recessive, neurodegenerative disorder. The resulting defects include unesterified cholesterol and sphingolipids accumulation in the late endosomal/lysosomal system resulting in organ dysfunction including liver disease. Materials & methods: First, we performed MS analysis of a complex mammalian proteome using both nano- and standard-flow ESI with the intent of developing a differential proteomics platform using standard-flow ESI. Next, we measured the differential liver proteome in the NPC1 mouse model via label-free quantitative MS using standard-flow ESI. Results: Using the standard-flow ESI approach, we found altered protein levels including, increased Limp2 and Rab7a in liver tissue of Npc1-/- compared to control mice. Conclusion: Standard-flow ESI can be a tool for quantitative proteomic studies when sample amount is not limited. Using this method, we have identified new protein markers of NPC1.
Collapse
|
16
|
Hammond N, Munkacsi AB, Sturley SL. The complexity of a monogenic neurodegenerative disease: More than two decades of therapeutic driven research into Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1109-1123. [PMID: 31002946 DOI: 10.1016/j.bbalip.2019.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022]
Abstract
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.
Collapse
Affiliation(s)
- Natalie Hammond
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| | - Stephen L Sturley
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
17
|
Dias IH, Wilson SR, Roberg-Larsen H. Chromatography of oxysterols. Biochimie 2018; 153:3-12. [DOI: 10.1016/j.biochi.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
|
18
|
Piraud M, Pettazzoni M, Lavoie P, Ruet S, Pagan C, Cheillan D, Latour P, Vianey-Saban C, Auray-Blais C, Froissart R. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018; 41:457-477. [PMID: 29556840 DOI: 10.1007/s10545-017-0126-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann-Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.
Collapse
Affiliation(s)
- Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France.
| | - Magali Pettazzoni
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Pamela Lavoie
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Séverine Ruet
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Cécile Pagan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - David Cheillan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Philippe Latour
- Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vianey-Saban
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Christiane Auray-Blais
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roseline Froissart
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To update researchers of recently discovered metabolites of cholesterol and of its precursors and to suggest relevant metabolic pathways. RECENT FINDINGS Patients suffering from inborn errors of sterol biosynthesis, transport and metabolism display unusual metabolic pathways, which may be major routes in the diseased state but minor in the healthy individual. Although quantitatively minor, these pathways may still be important in healthy individuals. Four inborn errors of metabolism, Smith-Lemli-Opitz syndrome, cerebrotendinous xanthomatosis and Niemann Pick disease types B (NPB) and C (NPC) result from mutations in different genes but can generate elevated levels of the same sterol metabolite, 7-oxocholesterol, in plasma. How this molecule is metabolized further is of great interest as its metabolites may have an important role in embryonic development. A second metabolite, abundant in NPC and NPB diseases, cholestane-3β,5α,6β-triol (3β,5α,6β-triol), has recently been shown to be metabolized to the corresponding bile acid, 3β,5α,6β-trihydroxycholanoic acid, providing a diagnostic marker in plasma. The origin of cholestane-3β,5α,6β-triol is likely to be 3β-hydroxycholestan-5,6-epoxide, which can alternatively be metabolized to the tumour suppressor dendrogenin A (DDA). In breast tumours, DDA levels are found to be decreased compared with normal tissues linking sterol metabolism to cancer. SUMMARY Unusual sterol metabolites and pathways may not only provide markers of disease, but also clues towards cause and treatment.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, UK
| | | |
Collapse
|
20
|
Voorink-Moret M, Goorden SMI, van Kuilenburg ABP, Wijburg FA, Ghauharali-van der Vlugt JMM, Beers-Stet FS, Zoetekouw A, Kulik W, Hollak CEM, Vaz FM. Rapid screening for lipid storage disorders using biochemical markers. Expert center data and review of the literature. Mol Genet Metab 2018; 123:76-84. [PMID: 29290526 DOI: 10.1016/j.ymgme.2017.12.431] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/17/2017] [Accepted: 12/17/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND In patients suspected of a lipid storage disorder (sphingolipidoses, lipidoses), confirmation of the diagnosis relies predominantly on the measurement of specific enzymatic activities and genetic studies. New UPLC-MS/MS methods have been developed to measure lysosphingolipids and oxysterols, which, combined with chitotriosidase activity may represent a rapid first tier screening for lipid storage disorders. MATERIAL AND METHODS A lysosphingolipid panel consisting of lysoglobotriaosylceramide (LysoGb3), lysohexosylceramide (LysoHexCer: both lysoglucosylceramide and lysogalactosylceramide), lysosphingomyelin (LysoSM) and its carboxylated analogue lysosphingomyelin-509 (LysoSM-509) was measured in control subjects and plasma samples of predominantly untreated patients affected with lipid storage disorders (n=74). In addition, the oxysterols cholestane-3β,5α,6β-triol and 7-ketocholesterol were measured in a subset of these patients (n=36) as well as chitotriosidase activity (n=43). A systematic review of the literature was performed to assess the usefulness of these biochemical markers. RESULTS Specific elevations of metabolites, i.e. without overlap between controls and other lipid storage disorders, were found for several lysosomal storage diseases: increased LysoSM levels in acid sphingomyelinase deficiency (Niemann-Pick disease type A/B), LysoGb3 levels in males with classical phenotype Fabry disease and LysoHexCer (i.e. lysoglucosylceramide/lysogalactosylceramide) in Gaucher and Krabbe diseases. While elevated levels of LysoSM-509 and cholestane-3β,5α,6β-triol did not discriminate between Niemann Pick disease type C and acid sphingomyelinase deficiency, LysoSM-509/LysoSM ratio was specifically elevated in Niemann-Pick disease type C. In Gaucher disease type I, mild increases in several lysosphingolipids were found including LysoGb3 with levels in the range of non-classical Fabry males and females. Chitotriosidase showed specific elevations in symptomatic Gaucher disease, and was mildly elevated in all other lipid storage disorders. Review of the literature identified 44 publications. Most findings were in line with our cohort. Several moderate elevations of biochemical markers were found across a wide range of other, mainly inherited metabolic, diseases. CONCLUSION Measurement in plasma of LysoSLs and oxysterols by UPLC-MS/MS in combination with activity of chitotriosidase provides a useful first tier screening of patients suspected of lipid storage disease. The LysoSM-509/LysoSM ratio is a promising parameter in Niemann-Pick disease type C. Further studies in larger groups of untreated patients and controls are needed to improve the specificity of the findings.
Collapse
Affiliation(s)
- M Voorink-Moret
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - S M I Goorden
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - A B P van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - F A Wijburg
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | - F S Beers-Stet
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - A Zoetekouw
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - W Kulik
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - C E M Hollak
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - F M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Boltshauser E, Weber KP. Laboratory investigations. HANDBOOK OF CLINICAL NEUROLOGY 2018; 154:287-298. [PMID: 29903445 DOI: 10.1016/b978-0-444-63956-1.00017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This chapter deals with chemical and hematologic investigations which are often considered in the diagnostic workup of subacute to chronic cerebellar ataxias. Relevant investigations in blood (serum, plasma), urine, and cerebrospinal fluid are discussed. Particular attention is paid to early diagnosis of treatable metabolic ataxias (such as abetalipoproteinemia, coenzyme Q10 deficiency, cerebrotendinous xanthomatosis, glucose transporter type 1 deficiency, Refsum disease, and vitamin E deficiency), but autoimmune ataxias, other vitamin deficiencies, and endocrine disorders should also be kept in mind. Adequate interpretation of test results has to consider age-specific reference values. The selection of investigations should mainly be driven by the overall clinical context, considering gender, history, age, and mode of presentation, cerebellar and other neurologic as well as extraneurologic findings.
Collapse
Affiliation(s)
- Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, University of Zurich, Zurich, Switzerland; Departments of Neurology and Ophthalmology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Konrad P Weber
- Department of Pediatric Neurology, University Children's Hospital, University of Zurich, Zurich, Switzerland; Departments of Neurology and Ophthalmology, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
22
|
Vanier MT, Gissen P, Bauer P, Coll MJ, Burlina A, Hendriksz CJ, Latour P, Goizet C, Welford RWD, Marquardt T, Kolb SA. Diagnostic tests for Niemann-Pick disease type C (NP-C): A critical review. Mol Genet Metab 2016; 118:244-54. [PMID: 27339554 DOI: 10.1016/j.ymgme.2016.06.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
Niemann-Pick disease type C (NP-C) is a neurovisceral lysosomal cholesterol trafficking and lipid storage disorder caused by mutations in one of the two genes, NPC1 or NPC2. Diagnosis has often been a difficult task, due to the wide range in age of onset of NP-C and clinical presentation of the disease, combined with the complexity of the cell biology (filipin) laboratory testing, even in combination with genetic testing. This has led to substantial delays in diagnosis, largely depending on the access to specialist centres and the level of knowledge about NP-C of the physician in the area. In recent years, advances in mass spectrometry has allowed identification of several sensitive plasma biomarkers elevated in NP-C (e.g. cholestane-3β,5α,6β-triol, lysosphingomyelin isoforms and bile acid metabolites), which, together with the concomitant progress in molecular genetic technology, have greatly impacted the strategy of laboratory testing. Specificity of the biomarkers is currently under investigation and other pathologies are being found to also result in elevations. Molecular genetic testing also has its limitations, notably with unidentified mutations and the classification of new variants. This review is intended to increase awareness on the currently available approaches to laboratory diagnosis of NP-C, to provide an up to date, comprehensive and critical evaluation of the various techniques (cell biology, biochemical biomarkers and molecular genetics), and to briefly discuss ongoing/future developments. The use of current tests in proper combination enables a rapid and correct diagnosis in a large majority of cases. However, even with recent progress, definitive diagnosis remains challenging in some patients, for whom combined genetic/biochemical/cytochemical markers do not provide a clear answer. Expertise and reference laboratories thus remain essential, and further work is still required to fulfill unmet needs.
Collapse
Affiliation(s)
- Marie T Vanier
- INSERM Unit 820, 7 Rue Guillaume Paradin, 69008 Lyon, France; Laboratoire Gillet-Mérieux, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Paul Gissen
- UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Great Ormond Street Hospital, London WC1N 3JH, UK.
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tübingen, 72076 Tübingen, Germany.
| | - Maria J Coll
- Inborn Errors of Metabolism Section, Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; CIBERER, Spain.
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Pediatrics, University Hospital, 35129 Padova, Italy.
| | - Christian J Hendriksz
- The Mark Holland Metabolic Unit, Salford Royal Foundation NHS Trust, Salford, Manchester M68HD, UK; University of Pretoria, Steve Biko Academic Hospital, Department of Paediatrics and Child Health, Pretoria 0001, South Africa.
| | - Philippe Latour
- UF de Neurogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Cyril Goizet
- CHU Bordeaux, Department of Medical Genetics, 33076 Bordeaux, France; INSERM Unit 1211, University of Bordeaux, 33076 Bordeaux, France.
| | - Richard W D Welford
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| | - Thorsten Marquardt
- Unit for Inborn Errors of Metabolism, University Hospital Münster, 48149 Münster, Germany.
| | - Stefan A Kolb
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| |
Collapse
|