1
|
Singh D, Piplani M, Kharkwal H, Murugesan S, Singh Y, Aggarwal A, Chander S. Anticancer Potential of Compounds Bearing Thiazolidin-4-one Scaffold: Comprehensive Review. PHARMACOPHORE 2023. [DOI: 10.51847/ohzuia1yg6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
2
|
Roszczenko P, Holota S, Szewczyk OK, Dudchak R, Bielawski K, Bielawska A, Lesyk R. 4-Thiazolidinone-Bearing Hybrid Molecules in Anticancer Drug Design. Int J Mol Sci 2022; 23:13135. [PMID: 36361924 PMCID: PMC9654980 DOI: 10.3390/ijms232113135] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/16/2023] Open
Abstract
Oncological diseases have currently reached an epidemic scale, especially in industrialized countries. Such a situation has prompted complex studies in medicinal chemistry focused on the research and development of novel effective anticancer drugs. In this review, the data concerning new 4-thiazolidinone-bearing hybrid molecules with potential anticancer activity reported during the period from the years 2017-2022 are summarized. The main emphasis is on the application of molecular hybridization methodologies and strategies in the design of small molecules as anticancer agents. Based on the analyzed data, it was observed that the main directions in this field are the hybridization of scaffolds, the hybrid-pharmacophore approach, and the analogue-based drug design of 4-thiazolidinone cores with early approved drugs, natural compounds, and privileged heterocyclic scaffolds. The mentioned design approaches are effective tools/sources for the generation of hit/lead compounds with anticancer activity and will be relevant to future studies.
Collapse
Affiliation(s)
- Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Olga Klaudia Szewczyk
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Rostyslav Dudchak
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| |
Collapse
|
3
|
Preparation and characterization of steroid and umbelliferone-based hetero-bifunctional poly(ε-caprolactone)s for potential drug delivery systems: antimicrobial and anticancer activities. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Soni HI, Patel NB, Parmar RB, Bacab MJC, River G. Microwave Irradiated Synthesis of Pyrimidine Containing, Thiazolidin-4-ones: Antimicrobial, Anti-tuberculosis, Antimalarial, and Anti-protozoa evaluation. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220111124104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim:
This study aims to synthesize thiazolidine-4-one compounds with a pyrimidine nucleus and evaluate against different species of bacteria, fungi, protozoa, and the malaria parasite.
Background:
Microwave irradiation was the best method for synthesizing the thiazolidin-4-one ring system. It took only 15 minutes for synthesizing thiazolidin-4-one while the conventional method required 12 hours. The rapid reaction was the main concern of this research.
Objective:
Pyrimidine and Thiazolidin-4-one nucleus have broad-spectrum biological activity and when it is introduced with other hetero atoms containing moiety, many types of biological activities have been found; antimicrobial, anti-tuberculosis, anti-protozoa, antimalarial are the main activities. The activity of these compounds inspired us to do extra research on Thiazolidin-4-one fused pyrimidines with different functional groups. The aim of this is to synthesize a combination of these two ring systems in less time by using a microwave irradiation method and to evaluate new compounds for different bioactivity.
Method:
2-(4-Chlorophenyl)-3-(4-(substituted phenyl)-6-(substituted aryl) pyrimidin-2-yl) thiazolidin-4-ones (6A-J) were synthesized by microwave irradiation to save energy and time. The structure of all newly synthesized motifs was characterized by spectral analysis (1H NMR, 13C NMR, IR, spectroscopy) and screened for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes, antifungal activity against Candida albicans, Aspergillus niger, Aspergillus clavatus, anti-tuberculosis activity against M. tuberculosis H37RV, antimalarial activity against Plasmodium falciparum and anti-protozoa activity against L. mexicana and T. cruzi.
Result:
Because of microwave irradiation synthesis, time period is very less for preparing the new compound. Biological response given by compounds 6B, 6C, 6D, 6E, 6G, 6H, and 6J was found excellent.
Conclusion:
Good yield with purity of the newly synthesized thiazolidine-4-one compounds obtained in less time by using microwave irradiation. The biological response of some of the compounds of this series was found excellent
Collapse
Affiliation(s)
- Hetal I. Soni
- C. B. Patel Computer & J. N. M. Patel Science College, Surat-395 017, Gujarat, India
| | - Navin B. Patel
- Organic Research Laboratory, Department of Chemistry, Veer Narmad South Gujarat
| | - Rahul B. Parmar
- Atmanand Saraswati Science College, Surat-395006, Gujarat, India
| | - Manuel J. Chan- Bacab
- Departamento de Microbiología Ambientaly Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar, s/n, Campeche, México
| | - Gildardo River
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| |
Collapse
|
5
|
Tantawy AH, El-Behairy MF, Abd-Allah WH, Jiang H, Wang MQ, Marzouk AA. Design, Synthesis, Biological Evaluation, and Computational Studies of Novel Fluorinated Candidates as PI3K Inhibitors: Targeting Fluorophilic Binding Sites. J Med Chem 2021; 64:17468-17485. [PMID: 34791873 DOI: 10.1021/acs.jmedchem.1c01674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Highly fluorinated candidates containing anticancer pharmacophores like thiosemicarbazone (5a-e) and its cyclic analogues hydrazineylidenethiazolidine (6a-e), 2-aminothiadiazole (7a-e), and 2-hydrazineylidenethiazolidin-4-one (8a-e) were synthesized, and their cytotoxic activity was assayed against 60 tumor cell lines. Compounds 6c, 7b, and 8b displayed the most potent activity with lower toxic effects on MCF-10a. In vitro phosphatidylinositol 3-kinase (PI3K) enzyme inhibition was performed. Compound 6c displayed half-maximal inhibitory concentration (IC50, μM) values of 5.8, 2.3, and 7.9; compound 7b displayed IC50 values of 19.4, 30.7, and 73.7; and compound 8b displayed IC50 values of 77.5, 53.5, and 121.3 for PI3Kα, β, and δ, respectively. Moreover, cell cycle progression caused cell cycle arrest at the S phase for compounds 6c and 8b and at G1/S for compound 7b, while apoptosis was induced. In silico studies; molecular docking; physicochemical parameters; and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis were performed. The results showed that compound 6c is the most potent one with a selectivity index (SI) of 39 and is considered as a latent lead for further optimization of anticancer agents.
Collapse
Affiliation(s)
- Ahmed H Tantawy
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Department of Chemistry, College of Science, Benha University, Benha 13518, Egypt
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufiya 32897, Egypt
| | - Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, Collage of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, P.O. 77, 6th of October City, Giza 12568, Egypt
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
6
|
Negi M, Chawla P, Faruk A, Chawla V. Role of 4-Thiazolidinone Scaffold in Targeting Variable Biomarkers and Pathways Involving Cancer. Anticancer Agents Med Chem 2021; 22:1458-1477. [PMID: 34229596 DOI: 10.2174/1871520621666210706104227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer can be considered as a genetic as well as a metabolic disorder. Current cancer treatment scenario looks like aggravating tumor cell metabolism, causing the disease to progress even with greater intensity. The cancer therapy is restricted to limitations of poor patient compliance due to toxicities to normal tissues and multi-drug resistance development. There is an emerging need for cancer therapy to be more focused on the better understanding of genetic, epigenetic and transcriptional changes resulting in cancer progression and their relationship with treatment sensitivity. OBJECTIVE The 4-thiazolidinone nucleus possesses marked anticancer potential towards different biotargets, thus targeting different cancer types like breast, prostate, lung, colorectal and colon cancers, renal cell adenocarcinomas and gliomas. Therefore, conjugating the 4-thiazolidinone scaffold with other promising moieties or by directing the therapy towards targeted drug delivery systems like the use of nanocarrier systems, can provide the gateway for optimizing the anticancer efficiency and minimizing the adverse effects and drug resistance development, thus providing stimulus for personalized pharmacotherapy. METHODS An exhaustive literature survey has been carried out to give an insight into the anticancer potential of the 4-thiazolidinone nucleus either alone or in conjugation with other active moieties, with the mechanisms involved in preventing proliferation and metastasis of cancer covering a vast range of publications of repute. CONCLUSION This review aims to summarise the work reported on anticancer activity of 4-thiazolidinone derivatives covering various cancer biomarkers and pathways involved, citing the data from 2005 till now, which may be beneficial to the researchers for future development of more efficient 4-thiazolidinone derivatives.
Collapse
Affiliation(s)
- Meenakshi Negi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, BFUHS University, Faridkot, India
| |
Collapse
|
7
|
Guerrero-Pepinosa NY, Cardona-Trujillo MC, Garzón-Castaño SC, Veloza LA, Sepúlveda-Arias JC. Antiproliferative activity of thiazole and oxazole derivatives: A systematic review of in vitro and in vivo studies. Biomed Pharmacother 2021; 138:111495. [PMID: 33765586 DOI: 10.1016/j.biopha.2021.111495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Thiazole and oxazole are compounds with a heterocyclic nucleus that have attracted the attention of medicinal chemistry due to the great variety of biological activities that they enable. In recent years, their study has increased, finding a wide range of biological activities, including antifungal, antiparasitic, anti-inflammatory, and anticancer activities. This systematic review provides evidence from the literature on the antiproliferative and antitumor activities of thiazole and oxazole and their derivatives from 2014 to April 2020. Three bibliographical databases were consulted (PubMed, Web of Science, and Scopus), and a total of 32 studies were included in this paper based on our eligibility criteria. The analysis of the activity-structure relationship allows us to conclude that most of the promising compounds identified contained thiazole nuclei or derivatives.
Collapse
Affiliation(s)
- Nancy Y Guerrero-Pepinosa
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - María C Cardona-Trujillo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Sandra C Garzón-Castaño
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Biomedicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnología, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
8
|
Huang X, Wu Y, Huang Y, Liu Q, Chen H, Dai F, Liang F, Gan C. Studies on apoptosis induced by B-norcholesteryl benzimidazole compounds in HeLa cells. Steroids 2021; 168:108802. [PMID: 33587927 DOI: 10.1016/j.steroids.2021.108802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Certain B-norcholesteryl benzimidazole compounds were found to mediate marked anti-tumor proliferative effects in vitro in our earlier study. Here, the mechanism of action of these anti-tumor effects was evaluated using HeLa human cervical cancer cells. Methods for detecting cell invasion and migration, Annexin V-PI double staining, cell cycle status, and mitochondrial membrane potential Δψm were employed. These compounds were confirmed to significantly inhibit the proliferation of HeLa cells in vitro. Compound 1 induced apoptosis in S phase, compound 2induced apoptosis in the G0/G1 phase and compound 3 induced late apoptosis in the G2/M phase. These compounds induced HeLa cell apoptosis through depolarization of mitochondrial membrane potential Δψm in a dose-dependent manner. B-norcholesteryl benzimidazole compounds induced morphological changes in HeLa cells and inhibited proliferation, invasion and metastasis. Apoptosis was promoted by mechanisms involving p21 and p53 in this cervical cancer cell line.
Collapse
Affiliation(s)
- Xiaotong Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yulan Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Qinzhou Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Hualong Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Feng Dai
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Fengyan Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
9
|
Çıkla-Süzgün P, Küçükgüzel ŞG. Recent Advances in Apoptosis: THE Role of Hydrazones. Mini Rev Med Chem 2019; 19:1427-1442. [PMID: 30968776 DOI: 10.2174/1389557519666190410125910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/22/2023]
Abstract
The process of programmed cell death in higher eukaryotes (apoptosis), is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered as a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Apoptosis seems to play an important key role in the progression of several human diseases like Alzheimer's disease, Parkinson's disease and many types of cancer. Promotion of apoptosis may be a good approach for the prevention of cancer cell proliferation. In early studies, antitumor compounds have been found to induce the apoptotic process in tumor cells. On the other hand, several hydrazones were reported to have lower toxicity than hydrazides due to the blockage of -NH2 group. Therefore, the design of hydrazones that activate and promote apoptosis is an attractive strategy for the discovery and development of potential anticancer agents. The aim of this review is to provide a general overview of current knowledge and the connection between apoptosis and hydrazone. It is also the guide for the apoptotic activities of new hydrazone derivatives.
Collapse
Affiliation(s)
- Pelin Çıkla-Süzgün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydapaşa, 34668, İstanbul, Turkey
| | - Ş Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydapaşa, 34668, İstanbul, Turkey
| |
Collapse
|
10
|
Mohamed AH, Shaker RM. An Efficient Method for the Synthesis of N‐uracil‐4‐oxo‐thiazolidines without Catalyst. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Asmaa H. Mohamed
- Chemistry Department, Faculty of ScienceMinia University El‐Minia Egypt
| | - Raafat M. Shaker
- Chemistry Department, Faculty of ScienceMinia University El‐Minia Egypt
| |
Collapse
|
11
|
Živković MB, Novaković IT, Matić IZ, Sladić DM, Krstić NM. Synthesis and preliminary screening for the biological activity of some steroidal Δ 4-unsaturated semicarbazone derivatives. Steroids 2019; 148:36-46. [PMID: 31075341 DOI: 10.1016/j.steroids.2019.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/08/2019] [Accepted: 04/20/2019] [Indexed: 10/26/2022]
Abstract
Eleven new steroidal mono- and bis(semicarbazones) 2a-e, 4d and 3a-e have been prepared starting from various 3-oxo-α,β-unsaturated steroids. Mono-semicarbazones 2a-e were further subjected to ethyl chloroacetate in boiling absolute ethanol but, instead of expected intramolecular cyclocondensation reaction products, the new carbazate esters 5a-e were obtained. The structures of all synthesized compounds and identification of each E/Z isomer were deduced by elemental analysis, HRMS, NMR, and IR spectroscopy. Preliminary screening for the cytotoxic activity in vitro of the new compounds has been conducted against three cancer cell lines, K562, Jurkat and HeLa cells. HeLa cells were the most sensitive while K562 cells were the least sensitive to the cytotoxic action of the novel steroid derivatives. Compounds 2e, 3c and 5e were found to have the best but still moderate cytotoxic effects. All tested compounds showed very weak antimicrobial activities. These results demonstrate that the replacement of thioxo group with carbonyl group in steroidal hydrazone derivatives resulted in decrease in their biological activity.
Collapse
Affiliation(s)
- Marijana B Živković
- Center for Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, P. O. Box 473, 11001 Belgrade, Serbia.
| | - Irena T Novaković
- Center for Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, P. O. Box 473, 11001 Belgrade, Serbia.
| | - Ivana Z Matić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | - Dušan M Sladić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P. O. Box 158, 11001 Belgrade, Serbia.
| | - Natalija M Krstić
- Center for Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, P. O. Box 473, 11001 Belgrade, Serbia.
| |
Collapse
|
12
|
Adding Oral Pioglitazone to Standard Induction Chemotherapy of Acute Myeloid Leukemia: A Randomized Clinical Trial. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:206-212. [PMID: 30770307 DOI: 10.1016/j.clml.2019.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/23/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The hypothesis of an effect by thiazolidinedione on leukemia cells was proposed 2 decades ago, but there is little clinical evidence regarding its efficacy. We evaluated the safety and efficacy of adding pioglitazone to standard induction chemotherapy in patients with acute myeloid leukemia (AML). PATIENTS AND METHODS In this randomized clinical trial, newly diagnosed AML patients were randomized to 1 of 2 groups. Patients in both groups received cytarabine (100 mg/m2 per day for 7 days) and daunorubicin (60 mg/m2 per day for 3 days). Patients in the pioglitazone group additionally received oral pioglitazone (45 mg per day). The 2 groups were compared according to remission rate, laboratory findings, and adverse events during treatment. RESULTS Forty patients were evaluated, 20 patients in each group. The complete remission rate was 20% more in the pioglitazone group compared to the control group (P = .202). Complications due to pioglitazone discontinuation were observed in 2 cases. The mean serum alanine aminotransferase in the fourth treatment week was significantly more in pioglitazone group compared to the control group (65.5 vs. 33.6 mg/dL, P = .039). The mean serum creatinine in all treatment phases was significantly higher in the pioglitazone group compared to the control group (P < .05). There were no significant differences between the 2 groups regarding other laboratory findings (P > .05). CONCLUSION Adding pioglitazone to cytarabine and daunorubicin increased the remission rate in AML patients compared to control subjects. Although this difference in remission rate between the 2 groups was not statistically significant, it could be important in the clinical setting. Pioglitazone may provide benefits as an adjuvant therapy for AML patients without causing serious adverse events.
Collapse
|