1
|
Serry AM, Abdelhafez OM, Khalil WKB, Hamed KA, Mabrouk MI, Shalaby MB, Ahmed EY. In vitro and in vivo antidiabetic evaluation of new Coumarin and Chromone derivatives: Design, synthesis and molecular modeling. Bioorg Chem 2025; 159:108338. [PMID: 40101577 DOI: 10.1016/j.bioorg.2025.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Diabetes mellitus is a chronic metabolic disease characterized by an imbalance in glucose homeostasis, which raises blood glucose levels. α-glucosidase enzyme hydrolyzes polysaccharides to produce glucose and since glucose is one of the primary energy sources in eukaryotes, α-glucosidase is a target for postprandial hyperglycemia regulation. The design and synthesis of new oxadiazole coumarin (5a,b and 6a,b), acryloyl chromone (10a-c) and pyrazolyl chromone (11a-c) derivatives as naturally based scaffolds are presented in this work. The new compounds were assessed as antidiabetic agents targeting α-glucosidase enzyme. With an IC50 value of 119.7 ± 4.3 μM, compound 11c demonstrated the most promising α-glucosidase inhibitory activity, superior to the standard drug acarbose (IC50 = 300.9 ± 10.9 μM). Furthermore, compared to the group of diabetic rats, the in vivo investigations demonstrated that medium and high dosages of 11c ameliorated the expression of diabetic related genes (GCK, SYT11, SNAP-25 and Ins1). According to the molecular docking results, 11c possessed the best binding energy score (-9.1 kcal/mol) within the α-glucosidase active site, outperforming the rest of the derivatives and the reference inhibitor acarbose (-8.2 kcal/mol). Lastly, an in silico molecular dynamic simulation and a pharmacokinetic study were performed on compound 11c.
Collapse
Affiliation(s)
- Aya M Serry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Omaima M Abdelhafez
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre, Dokki, Cairo, Egypt
| | - Karima A Hamed
- Department of Cell Biology, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed I Mabrouk
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | - Mohamed B Shalaby
- Toxicology Research Department, Research Institute of Medical Entomology, General Organisation of Teaching Hospitals and Institutes, Ministry of Health and Population, Dokki, Cairo, Egypt
| | - Eman Y Ahmed
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
2
|
Zarrin P, Ates-Alagoz Z. Targeting Bcl-2 with Indole Scaffolds: Emerging Drug Design Strategies for Cancer Treatment. Mini Rev Med Chem 2025; 25:293-318. [PMID: 39385424 DOI: 10.2174/0113895575306176240925094457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 10/12/2024]
Abstract
The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of antiapoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.
Collapse
Affiliation(s)
- Pouria Zarrin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
3
|
Elhinnawi MA, Boushra MI, Hussien DM, Hussein FH, Abdelmawgood IA. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cell Rev Rep 2025; 21:198-210. [PMID: 39422808 DOI: 10.1007/s12015-024-10797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is recognized as a major contributor to cancer-related mortality worldwide. Cancer stem cells (CSCs) are a tiny group of cancer cells that possess a significant ability to regenerate themselves, form tumors, and undergo differentiation. CSCs have a pivotal role in the initiation, spread, recurrence, and resistance to treatment of cancer. As a result, they are very susceptible to being targeted for therapeutic intervention. The potential to cure HCC may be achieved by efficiently targeting drugs that eradicate cancer stem cells. Mitochondria have a crucial function in granting drug resistance to cancer stem cells by means of mitochondrial metabolism, biogenesis, and dynamics. Dysfunction in mitochondrial metabolic processes, such as mitochondrial oxidative phosphorylation (OXPHOS), calcium signaling, and reactive oxygen species (ROS) generation, contributes to the initiation and progression of human malignancies, including HCC. ROS have both beneficial and detrimental effects depending on their concentration. Consequently, ROS have become a prominent subject in the study of the fundamental mechanisms of HCC. Furthermore, an imbalance in the process of creating new mitochondria is a characteristic feature of CSCs, and an increase in mitochondrial biogenesis is associated with the heightened resistance observed in CSCs. This article provides a detailed examination of the involvement of mitochondria in the preservation of CSCs, as well as the spread of HCC. A deeper understanding of how mitochondria participate in tumorigenesis and drug resistance could result in the discovery of novel cancer treatments.
Collapse
Affiliation(s)
- Manar A Elhinnawi
- Experimental Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | | | | | | | | |
Collapse
|
4
|
Abdallah SM, Muhammed RE, Mohamed RE, Khalil WKB, Taha DA, Shalaby MB, Elgohary I, Abdallah AA, Habib HM, El-Yazbi AF. Integrated Biomarker Response Emphasizing Neuronal Oxidative Stress and Genotoxicity Induced by Oxamyl in Sprague Dawley Rats: Ameliorative Effect of Ginseng as a Neuroprotective Agent. TOXICS 2024; 12:655. [PMID: 39330583 PMCID: PMC11435561 DOI: 10.3390/toxics12090655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Climate change has led to increased and varying pest infestation patterns, triggering a rise in pesticide usage and exposure. The effects of oxamyl, a widely used nematicide in Egypt, encompasses typical signs of carbamate intoxication; nevertheless, long-term effects of oxamyl exposure, particularly on the nervous system, require further elucidation. This study systematically investigated the mechanism and manifestations of repeated subacute exposure to sublethal doses of oxamyl in male SD rats. Data showed a dose-dependent genotoxic effect, manifested as increased bone marrow micronuclei and decreased brain expression of key genes involved in neurogenesis and neuronal development. Coincidently, brain histopathology showed dose-dependent neurodegeneration in various regions, associated with a significant increase in GFAP immunoreactivity, indicative of neuroinflammation. Biochemical examination revealed a typical pattern of cholinesterase inhibition by carbamates in serum and brain tissue, as well as increased oxidative stress markers in the brain such as SOD activity reduction, alongside an increase in NO and MDA. The ability of Ginseng at a 100 mg/Kg dose to ameliorate the effects of oxamyl exposure was investigated. Ginseng use, either as a protective or therapeutic regimen, attenuated the observed genotoxic, neuroinflammatory, and biochemical alterations. Our results indicate that repeated exposure to oxamyl triggers an integrative neurotoxic response, driven by genotoxicity, oxidative stress, and neuroinflammation, that could trigger an increase in neurological and cognitive disorders. These findings emphasize the urgent need for confirmatory translational studies in human subjects to assess these changes and inform policy decisions regarding safe levels of usage and appropriate agricultural and public health practices.
Collapse
Affiliation(s)
- Salwa M. Abdallah
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt; (S.M.A.); (R.E.M.); (R.E.M.)
| | - Reham E. Muhammed
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt; (S.M.A.); (R.E.M.); (R.E.M.)
| | - Reda E. Mohamed
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt; (S.M.A.); (R.E.M.); (R.E.M.)
| | - Wagdy K. B. Khalil
- Department of Cell Biology, National Research Centre, El-Bohouth, Cairo 12262, Egypt; (W.K.B.K.); (D.A.T.)
| | - Dalia A. Taha
- Department of Cell Biology, National Research Centre, El-Bohouth, Cairo 12262, Egypt; (W.K.B.K.); (D.A.T.)
| | - Mohamed B. Shalaby
- Department of Toxicology Research, Research Institute of Medical Entomology (RIME), General Organization of Teaching Hospitals and Institutes (GOTHI), Ministry of Health and Population (MoHP), Dokki, Cairo 12311, Egypt;
| | - Islam Elgohary
- Department of Pathology, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt;
| | - Amr A. Abdallah
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt; (S.M.A.); (R.E.M.); (R.E.M.)
| | - Hosam M. Habib
- Research & Innovation Hub, Alamein International University, Alamein 51718, Egypt
| | - Ahmed F. El-Yazbi
- Research & Innovation Hub, Alamein International University, Alamein 51718, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
5
|
Darwish DG, El-Sherief HAM, Abdel-Aziz SA, Abuo-Rahma GEDA. A decade's overview of 2-aminothiophenes and their fused analogs as promising anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2300758. [PMID: 38442316 DOI: 10.1002/ardp.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Over the past decades, cancer has been a challenging domain for medicinal chemists as it is an international health concern. In association, small molecules such as 2-aminothiophenes and their derivatives showed significant antitumor activity through variable modes of action. Therefore, this article aims to review the advances regarding these core scaffolds over the past 10 years, where 2-aminothiophenes and their fused analogs are classified and discussed according to their biological activity and mode of action, in the interest of boosting new design pathways for medicinal chemists to develop targeted antitumor candidates.
Collapse
Affiliation(s)
- Donia G Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
6
|
Yan T, Ding F, Zhang Y, Wang Y, Wang Y, Zhang Y, Zhu F, Zhang G, Zheng X, Jia G, Zhou F, Zhao Y, Zhao Y. Astaxanthin Inhibits H 2O 2-Induced Excessive Mitophagy and Apoptosis in SH-SY5Y Cells by Regulation of Akt/mTOR Activation. Mar Drugs 2024; 22:57. [PMID: 38393028 PMCID: PMC10890442 DOI: 10.3390/md22020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China; (T.Y.); (F.D.); (Y.Z.); (Y.W.); (Y.W.); (Y.Z.); (F.Z.); (G.Z.); (X.Z.); (G.J.); (F.Z.); (Y.Z.)
| |
Collapse
|
7
|
Huang Y, Tian W, Peng Z, Cheng Y, Wei M, Liu Z, Pang L, Cui J. Discovery and biological evaluation of pregnenolone selenocyanoamides with potential anticancer and antimicrobial activities. J Steroid Biochem Mol Biol 2023; 234:106388. [PMID: 37652364 DOI: 10.1016/j.jsbmb.2023.106388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Starting with pregnenolone, a 20-carbonyl group was converted into an amino group through a series of chemical reactions. This amino group was further converted into selenocyanoalkylamide, leading to the synthesis of six pregnenolone selenocyanoalkylamide derivatives. These compounds were then screened for antitumor activity in vitro, yielding promising results. Compounds 4b-4f show higher inhibitory activity than the positive control abiraterone and 2-methoxyestradiol, with IC50 values lower than 10 μmol/L against breast, ovarian, and cervical cancer cell lines that closely related to human hormone expression levels. The Annexin V assay of compound 4f revealed that compounds inhibited tumor cell proliferation primarily through the induction of programmed apoptosis. The zebrafish test results indicated that compound 4d had significant inhibitory activity against MCF-7 cell xenografts in vivo. Moreover, the antibacterial test indicated that compounds 4a and 4d-4e had better inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) than the positive controls vancomycin and ampicillin. These results suggest that these compounds may hold promise as novel antitumor agents or antimicrobial agents for further study.
Collapse
Affiliation(s)
- Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Wenhao Tian
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Zining Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Yang Cheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Meizhen Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| | - Zhiping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Liping Pang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
8
|
Tantawy MA, Shalby AB, Barnawi IO, Kattan SW, Abd-Rabou AA, Elmegeed GA. Anti-cancer activity, and molecular docking of novel hybrid heterocyclic steroids revealed promising anti-hepatocellular carcinoma agent: Implication of cyclin dependent kinase-2 pathway. Steroids 2023; 193:109187. [PMID: 36736802 DOI: 10.1016/j.steroids.2023.109187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
To identify new steroidal agents with potential biological activities, we synthesized hybrid steroids containing thiazole, pyrazole, isoxazole, thiophene or phthalazine moiety. Epi-androsterone 1 reacted with phenylthiosemicarbazide to afford the corresponding androstane-4-phenyl-3-thiosemicarbazone derivative 2. The latter product was used in the synthesis of a series of annulated steroid derivatives. Also, Epi-androsterone 1 reacted with the thienopyridazine derivative 16 to afford the thieno[3,4-d]pyridazino-N-ylidenoandrostane derivative 17. Compound 17 reacted readily with electron-poor olefins to yield the corresponding phthalazine steroid derivatives. Detailed experimental and spectroscopic evidences for the structures of the newly synthesized compounds are explained. Compounds 3, 7, 8a, 12a, 14, 17 and 21a, were investigated individually as anticancer agents on different panel of human malignant cell lines. Moreover, a computer modelling investigation was performed to speculate the macromolecular targets for the most promising candidate. The results revealed a concentration-dependent reduction in the number of viable cells in all cancer cell lines. Most notably, compound 7 was the most effective compound against all tested cancer cell lines, especially against HepG2 cell line; therefore, the mode of action of this compound against HCC was investigated. Compound 7 was able to induce cell cycle arrest, and DNA fragmentation in HepG2 cells. Moreover, compound 7 induced apoptosis via upregulating the expression of caspase-3, -8, -9, P53, Bax and inhibiting the expression of BCL2, and CDK2 genes. Our results highlighted compound 7 as a promising anti-hepatocellular carcinoma agent, with theoretical, and practical potential binding affinity with CDK2; therefore, more investigations are required to elucidate its chemotherapeutic value as anti-HCC agent.
Collapse
Affiliation(s)
- Mohamed A Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt.
| | - Aziza B Shalby
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Ibrahim Omar Barnawi
- Department of Biological Sciences, Faculty of Science, Taibah University, Al-Madinah Al-Munawwarah, 41321, Saudi Arabia
| | - Shahad W Kattan
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Ahmed A Abd-Rabou
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Gamal A Elmegeed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
9
|
Transethosomal Gel for the Topical Delivery of Celecoxib: Formulation and Estimation of Skin Cancer Progression. Pharmaceutics 2022; 15:pharmaceutics15010022. [PMID: 36678651 PMCID: PMC9864437 DOI: 10.3390/pharmaceutics15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The topical delivery of therapeutics is a promising strategy for managing skin conditions. Cyclooxygenase-2 (COX-2) inhibitors showed a possible target for chemoprevention and cancer management. Celecoxib (CXB) is a selective COX-2 inhibitor that impedes cell growth and generates apoptosis in different cell tumors. Herein, an investigation proceeded to explore the usefulness of nano lipid vesicles (transethosomes) (TES) of CXB to permit penetration of considerable quantities of the drug for curing skin cancer. The prepared nanovesicles were distinguished for drug encapsulation efficiency, vesicle size, PDI, surface charge, and morphology. In addition, FT-IR and DSC analyses were also conducted to examine the influence of vesicle components. The optimized formulation was dispersed in various hydrogel bases. Furthermore, in vitro CXB release and ex vivo permeability studies were evaluated. A cytotoxicity study proceeded using A431 and BJ1 cell lines. The expression alteration of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and DNA damage and fragmentation using qRT-PCR and comet assays were also investigated. Optimized CXB-TES formulation was spherically shaped and displayed a vesicle size of 75.9 ± 11.4 nm, a surface charge of -44.7 ± 1.52 mV, and an entrapment efficiency of 88.8 ± 7.2%. The formulated TES-based hydrogel displayed a sustained in vitro CXB release pattern for 24 h with an enhanced flux and permeation across rat skin compared with the control (free drug-loaded hydrogel). Interestingly, CXB-TES hydrogel has a lower cytotoxic effect on normal skin cells compared with TES suspension and CXB powder. Moreover, the level of expression of the CDKN2A gene was significantly (p ≤ 0.01, ANOVA/Tukey) decreased in skin tumor cell lines compared with normal skin cell lines, indicating that TES are the suitable carrier for topical delivery of CXB to the cancer cells suppressing their progression. In addition, apoptosis demonstrated by comet and DNA fragmentation assays was evident in skin cancer cells exposed to CXB-loaded TES hydrogel formulation. In conclusion, our results illustrate that CXB-TES-loaded hydrogel could be considered a promising carrier and effective chemotherapeutic agent for the management of skin carcinoma.
Collapse
|
10
|
Zhang Y, Lu J, Ma Y, Sun L, Wang S, Yue X, Yu J, Xue P. Establishment of fingerprint and mechanism of anti-myocardial ischemic effect of Syringa pinnatifolia. Biomed Chromatogr 2022; 36:e5475. [PMID: 35947036 DOI: 10.1002/bmc.5475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To establish the fingerprint of Syringa pinnatifolia Hemsl. (SP), analyze the blood components of SP, and explore the possible mechanism of SP's anti-myocardial ischemia, so as to provide scientific basis for the follow-up development and research of SP and lay a foundation for its clinical application. METHODS The fingerprint of SP was established by UPLC-QE-MS and GC-MS. A rat Myocardial infarction (MI) was constructed by ligating the left anterior descending branch (LAD) of the rat coronary artery, and SP alcohol extract was administered to evaluate its anti-myocardial ischemic effect. We analyzed the blood components of SP, screened the active compounds, established a database of SP anti-myocardial ischemic targets, and explored the possible mechanism of SP in treating MI by bioinformatics. The rats were examined by echocardiography, serum biomarkers were determined, and pathological changes were observed by histopathological examination. TUNEL staining was performed to detect the apoptotic level of cells, and western blot and qRT-PCR were performed to detect the expression levels of Bcl-2, Bax and caspase-3 in heart tissues. RESULTS In the fingerprint of SP, 24 common peaks were established, and the similarity evaluation results of 10 batches of SP were all > 0.9. UPLC-QE-MS and GC-MS detected a total of 17 active ingredients in the drug-containing serum, including terpenoids, flavonoids, phenols, phenylpropanoids and phenolic acids, the most abundant of which was resveratrol. Enrichment analysis of SP targets against myocardial ischemia revealed that key candidate targets of SP were significantly enriched in multiple pathways associated with apoptosis. Resveratrol was administered to the successfully modeled rats, and the results showed that the resveratrol group significantly reduced LVEDd and LVEDs and significantly increased EF and FS in all groups compared with the model group. Resveratrol significantly reduced the levels of CK-MB and LDH in serum compared to the model group (p < 0.001). Hematoxylin-eosin (HE) staining of rat myocardial tissue showed that all lesions were reduced under microscopic observation in the resveratrol group compared with the model group. RT-PCR and western blot results showed that resveratrol group down-regulated the expression of the pro-apoptotic factor Bax, up-regulated the expression of the anti-apoptotic factor Bcl-2, and decreased the expression of Caspase-3. CONCLUSION The established fingerprints are accurate, reliable and reproducible, and can be used as an effective method for the quality control of the herbs. The anti-myocardial ischemia effect of SP may be that resveratrol can improve cardiac function and inhibit cardiomyocyte apoptosis to protect cardiomyocytes. The present study provides ample evidence for the clinical use of SP, suggesting that this drug has great potential in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Ye Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Jingkun Lu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Lijun Sun
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Suwei Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Xin Yue
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Jiuwang Yu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Peifeng Xue
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| |
Collapse
|
11
|
Alshehri MA. Cardioprotective properties of Artemisia herba alba nanoparticles against heart attack in rats: A study of the antioxidant and hypolipidemic activities. Saudi J Biol Sci 2022; 29:2336-2347. [PMID: 35531258 PMCID: PMC9072917 DOI: 10.1016/j.sjbs.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, pharmaceutical scientists' interest has increased to find novel pharmaceutical natural substances with potent antioxidant capacity and very low side effects to be used safely in preventive medicine. One of the most common types of diseases with a large spread globally is cardiovascular diseases, which cause a high rate of deaths annually. The present study evaluated the use of Artemisia herba alba leaves' extract (AHALE) and AHALE zinc oxide nanoparticles (AHALE-ZnONPs) against isoproterenol (ISO) inducing myocardial infarction (MI) in male rats. Several groups of Wistar male rats fed a high-fat diet (HFD) were pretreated with several doses of AHALE or AHALE-ZnONPs for one month followed by exposure to ISO for two days. After treatment, samples of the rats' heart tissues and blood were collected for several molecular biological and biochemical analyses. Heart enzymes, antioxidant enzymes, lipid peroxidation compounds, lipid markers, activities, ROS generation, apoptosis, DNA damage and expression of lipid metabolism genes were analyzed in rats pretreated with AHALE or AHALE-ZnONPs followed by exposure to ISO. The results showed an increase in the levels of AST, ALT, LDH, CK, CK-MB, and cTnT (heart markers), elevation in TG, TC, and LDL levels (lipid profile markers), levels of TBARS and LOOH (lipid peroxidation products), ROS generation, DNA damage, apoptosis, and upregulation of PPAR-α, ADD1, FASN, and ACC genes in animals exposed to ISO in comparison with the control animals. Moreover, a decrease in antioxidant enzyme activities, including GPx, GRx, and GST, was observed in animals exposed to ISO in comparison with control rats. In male rats pretreated with AHALE or AHALE-ZnONPs followed by exposure to ISO, the oxidative stress induced by ISO was prevented. The results suggest that Artemisia extract could be considered for use as one of the natural compounds for prevention of atherosclerosis and heart diseases due to its high antioxidant and hypolipidemic activities. The reduced oxidative stress of Artemisia extract may be a result of the existence of flavonoids and phenolic substances.
Collapse
|
12
|
Shen Y, Yang F, Peng H, Zhang G, Zhu F, Xu H, Shi L. Anti-tumor effect of Yanggan Huayu granule by inducing AKT-mediated apoptosis in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114601. [PMID: 34487847 DOI: 10.1016/j.jep.2021.114601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yanggan Huayu granule (YGHY) is a formula of traditional Chinese medicine that has been widely used to treat patients with liver cancer. But its working mechanism is still poorly understood. AIM OF THE STUDY To investigate the anti-tumor effect of YGHY and its working mechanisms in hepatocellular carcinoma (HCC). MATERIALS AND METHODS H22 mouse xenograft model was used to detect the effect of YGHY on hepatocellular carcinoma (HCC). MTT and CCK8 assays were performed to assess the effect of YGHY on HCC cell growth. Transwell assay was performed to detect the invasion and migration activities of HCC cells. Effect of YGHY drug-contained serum on apoptosis was detected by flow cytometry. Western blot was performed to detect the protein expressions. RESULTS Results showed that YGHY inhibited tumor volume and weight, induced the apoptosis of HepG2 and SMMC-7721 cells and increased the protein expressions of Cleaved-Caspase3 and Cleaved-PARP. Furthermore, YGHY significantly down-regulated the protein expression of p-AKT. SC79, as an activator of AKT signaling, was able to increase the expression of p-AKT, and regulate the protein expressions of Cleaved-Caspase3, Cleaved-PARP, BCL-2 and BAX. YGHY drug-contained serum negated the protein expression change provided by SC79. CONCLUSIONS Taken together, this data indicates that YGHY could inhibit HCC growth by inducing apoptosis, operating through AKT signaling.
Collapse
Affiliation(s)
- Yang Shen
- Nanjing Medical University, Nanjing, Jiangsu, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Yang
- Department of Histology and Embryology, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Haiyan Peng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guangji Zhang
- TaiZhou Polytechnic College, Taizhou, Jiangsu, China
| | - Fangfang Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haojun Xu
- Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Le Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188569. [PMID: 34015412 DOI: 10.1016/j.bbcan.2021.188569] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Apoptosis deficiency is one of the most important features observed in neoplastic diseases. The Bcl-2 family is composed of a subset of proteins that act as decisive apoptosis regulators. Research and clinical studies have both demonstrated that the hyperactivation of Bcl-2-related anti-apoptotic effects correlates with cancer occurrence, progression and prognosis, also having a role in facilitating the radio- and chemoresistance of various malignancies. Therefore, targeting Bcl-2 inactivation has provided some compelling therapeutic advantages by enhancing apoptotic sensitivity or reversing drug resistance. Therefore, this pharmacological route turned into one of the most promising routes for cancer treatment. This review discusses some of the well-defined and emerging roles of Bcl-2 as well as its potential clinical value in cancer therapeutics.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
14
|
Du Z, Li G, Ge H, Zhou X, Zhang J. Design, Synthesis and Biological Evaluation of Steroidal Glycoconjugates as Potential Antiproliferative Agents. ChemMedChem 2021; 16:1488-1498. [PMID: 33476082 DOI: 10.1002/cmdc.202000966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Indexed: 01/06/2023]
Abstract
To systematically evaluate the impact of neoglycosylation upon the anticancer activities and selectivity of steroids, four series of neoglycosides of diosgenin, pregnenolone, dehydroepiandrosterone and estrone were designed and synthesized according to the neoglycosylation approach. The structures of all the products were elucidated by NMR analysis, and the stereochemistry of C20-MeON-pregnenolone was confirmed by crystal X-ray diffraction. The compounds' cytotoxicity on five human cancer cell lines was evaluated using a Cell Counting Kit-8 assay, and structure-activity relationships (SAR) are discussed. 2-deoxy-d-glucoside 5 k displayed the most potent antiproliferative activities against HepG2 cells with an IC50 value of 1.5 μM. Further pharmacological experiments on compound 5 k on HepG2 cells revealed that it could cause morphological changes and cell-cycle arrest at the G0/G1 phase and then induced the apoptosis, which might be associated with the enhanced expression of high-mobility group Box 1 (HMGB1). Taken together, these findings prove that the neoglycosylation of steroids could be a promising strategy for the discovery of potential antiproliferative agents.
Collapse
Affiliation(s)
- Zhichao Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Guolong Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 211198, P. R. China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang, 313000, P. R. China
| | - Xiaoyang Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, P. R. China.,ZhenPing Expert Workstation for Zhang Jian Zhenping, Ankang, Shaanxi, 725699, P. R. China
| |
Collapse
|
15
|
Kattan SW, Nafie MS, Elmgeed GA, Alelwani W, Badar M, Tantawy MA. Molecular docking, anti-proliferative activity and induction of apoptosis in human liver cancer cells treated with androstane derivatives: Implication of PI3K/AKT/mTOR pathway. J Steroid Biochem Mol Biol 2020; 198:105604. [PMID: 31982513 DOI: 10.1016/j.jsbmb.2020.105604] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022]
Abstract
Worldwide, cancer is still an area with high unmet medical need. Lead optimization efforts towards structure-based drug design were employed to discover newly synthesized hetero-steroid derivatives with promising anticancer effects against hepatocellular carcinoma (HCC). The aim of our study is to evaluate the anti-proliferative activity and the mechanism, a dual PI3K/mTOR inhibitor, and mechanism of action of a series of heterocylic androstane derivatives as anti-HCC agent. The cytotoxic effects of different heterocylic androstanes and 5FU as single agents, were assessed against both HepG2 cells and Non-malignant MDCK cell line to assess the toxicity. Then the underlying mechanism of compound 4 as most promising compound was evaluated using molecular docking, MTT assay, cell cycle analysis, DNA fragmentation, and real-time PCR. The results of MTT assay showed potential cytotoxic effect for compound 4 and 5 against liver cancer cell line with IC50 value 39.81 and 57.54 μM, respectively. Inhibition of the PI3K/AKT/mTOR pathway was achieved by compound 4, which was documented by molecular docking and augmented by gene expression analysis. Detailed mechanism revealed that compound 4 induced cell cycle arrest, DNA fragmentation, and induction of apoptosis by inhibition of anti-apoptotic genes, and upregulation of apoptotic genes. Our results shed a light on aminopyrazoloandrostane derivative 4 as an inhibitor of the PI3K/AKT/mTOR pathway, which might be acting as promising anti-liver cancer agent. Our data support further investigation of agents targeting the PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Shahad W Kattan
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Gamal A Elmgeed
- Hormones Department, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Walla Alelwani
- Department of Biochemistry, Collage of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Mohamed A Tantawy
- Hormones Department, Medical Research Division, National Research Centre, Cairo, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
16
|
Sun X, Zhang C, Guo H, Chen J, Tao Y, Wang F, Lin X, Liu Q, Su L, Qin A. Pregnenolone Inhibits Osteoclast Differentiation and Protects Against Lipopolysaccharide-Induced Inflammatory Bone Destruction and Ovariectomy-Induced Bone Loss. Front Pharmacol 2020; 11:360. [PMID: 32292342 PMCID: PMC7135856 DOI: 10.3389/fphar.2020.00360] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
Osteolytic bone disease is characterized by excessive osteoclast bone resorption leading to increased skeletal fragility and fracture risk. Multinucleated osteoclasts formed through the fusion of mononuclear precursors are the principle cell capable of bone resorption. Pregnenolone (Preg) is the grand precursor of most if not all steroid hormones and have been suggested to be a novel anti-osteoporotic agent. However, the effects of Preg on osteoclast biology and function has yet to be shown. Here we examined the effect of Preg on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation and bone resorption in vitro, and potential therapeutic application in inflammatory bone destruction and bone loss in vivo. Our in vitro cellular assays demonstrated that Preg can inhibit the formation of TRAP+ve osteoclast formation as well as mature osteoclast bone resorption in a dose-dependent manner. The expression of osteoclast marker genes CTSK, TRAP, DC-STAMP, ATP6V0d2, and NFATc1 were markedly attenuated. Biochemical analyses of RANKL-induced signaling pathways showed that Preg inhibited the early activation of extracellular regulated protein kinases (ERK) mitogen-activated protein kinase (MAPK) and nuclear factor-κB, which consequently impaired the downstream induction of c-Fos and NFATc1. Using reactive oxygen species (ROS) detection assays, we found that Preg exhibits anti-oxidant properties inhibiting the generation of intracellular ROS following RANKL stimulation. Consistent with these in vitro results, we confirmed that Preg protected mice against local Lipopolysaccharide (LPS)-induced inflammatory bone destruction in vivo by suppressing osteoclast formation. Furthermore, we did not find any observable effect of Preg on osteoblastogenesis and mineralization in vitro. Finally Preg was administered to ovariectomy (OVX)-induced bone loss and demonstrated that Preg prevented systemic OVX-induced osteoporosis. Collectively, our observations provide strong evidence for the use of Preg as anti-osteoclastogenic and anti-resorptive agent for the potential treatment of osteolytic bone conditions.
Collapse
Affiliation(s)
- Xiaochen Sun
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huan Guo
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiao Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yali Tao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xixi Lin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - An Qin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Chen K, Lin ZW, He SM, Wang CQ, Yang JC, Lu Y, Xie XB, Li Q. Metformin inhibits the proliferation of rheumatoid arthritis fibroblast-like synoviocytes through IGF-IR/PI3K/AKT/m-TOR pathway. Biomed Pharmacother 2019; 115:108875. [PMID: 31028998 DOI: 10.1016/j.biopha.2019.108875] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/31/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease in which synovial fibroblast-like cells (FLSs) play an important role in RA development and is known to be lack of effective therapy. Thus, novel therapeutic strategies are greatly needed for treatment of RA. Metformin, a first-line drug for the treatment of type 2 diabetes, has been reported to inhibit the proliferation of a variety of tumor cells. In this study, we demonstrated that metformin could inhibit the RA-FLS proliferation in dose- and time-dependent manner. Our cell viability MTT test and 5-ethynyl-2-deoxyuridine incorporation assay showed that metformin inhibited the RA-FLSs proliferation with a time- and concentration-dependent increase. More importantly, metformin induced G2/M cell cycle phase arrest in RA-FLS via the IGF-IR/PI3K/AKT/ m-TOR pathway and inhibited m-TOR phosphorylation through both the IGF-IR/PI3K/AKT signaling pathways thereby further upregulating and down-regulating p70s6k and 4E-BP1 phosphorylation, respectively; however, metformin was found not to induce apoptosis in RA-FLSs. In summary, these results demonstrate that metformin can effectively inhibit RA-FLS proliferation through inducing cell cycle and upregulating and down-regulating p70s6k and 4E-BP1 phosphorylation. Moreover, IGF-IR/PI3K/AKT m-TOR signaling pathway can be regulated by metformin. Our results indicate that metformin may provide a new way of thinking for the treatment of RA.
Collapse
Affiliation(s)
- Kun Chen
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China; Department of Orthopedics, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, Guangdong, 516002, China
| | - Zhao-Wei Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Sheng-Mao He
- Department of orthopedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng-Qiang Wang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Jian-Cheng Yang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yao Lu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiao-Bo Xie
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Qi Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
18
|
Anticancer activity of grassy Hystrix brachyura bezoar and its mechanisms of action: An in vitro and in vivo based study. Biomed Pharmacother 2019; 114:108841. [PMID: 30981106 DOI: 10.1016/j.biopha.2019.108841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 01/17/2023] Open
Abstract
Porcupine bezoar (PB) is a calcified undigested material generally found in porcupine's (Hystrix brachyura) gastrointestinal tract. The bezoar is traditionally used in South East Asia and Europe for the treatment of cancer, poisoning, dengue, typhoid, etc. However, limited scientific studies have been performed to verify its anticancer potential to substantiate its traditional claims in the treatment of cancers. Hence, this study was aimed at investigating the in vitro and in vivo anticancer properties of two grassy PB aqueous extract (PB-A and PB-B) using A375 cancer cell line and zebrafish model, respectively. This paper presents the first report on in vitro A375 cell viability assay, apoptosis assay, cell cycle arrest assay, migration assay, invasion assay, qPCR experimental assay and in vivo anti-angiogenesis assay using the grassy PBs. Experimental findings revealed IC50 value are 26.59 ± 1.37 μg/mL and 30.12 ± 3.25 μg/mL for PB-A and PB-B respectively. PBs showed anti-proliferative activity with no significant cytotoxic effect on normal human dermal fibroblast (NHDF). PBs were also found to induce apoptosis via intrinsic pathway and arrest cell cycle at G2/M phase. Additionally, the findings indicated its ability to debilitate migration and invasion of A375 cells. Further evaluation using embryo zebrafish model revealed LC50 = 450.0 ± 2.50 μg/mL and 58.7 ± 5.0 μg/mL for PB-A and PB-B which also exerted anti-angiogenesis effect in zebrafish. Moreover, stearic acid, ursodeoxycholic acid and pregnenolone were identified as possible metabolites that might contribute to the anticancer effect of the both PBs. Overall, this study demonstrated that PB-A and PB-B possess potential in vitro and in vivo anticancer effects which are elicited through selective cytotoxic effect, induction of apoptosis, inhibition of migration and invasion and anti-angiogenesis. This study provides scientific evidence that the porcupine bezoar do possess anti-cancer efficacy and further justifies its traditional utility. However, more experiments with higher vertebrae models are still warranted to validate its traditional claims as an anticancer agent.
Collapse
|