1
|
Więch A, Tarczewska A, Ożyhar A, Orłowski M. Metal Ions Induce Liquid Condensate Formation by the F Domain of Aedes aegypti Ecdysteroid Receptor. New Perspectives of Nuclear Receptor Studies. Cells 2021; 10:cells10030571. [PMID: 33807814 PMCID: PMC7999165 DOI: 10.3390/cells10030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
The superfamily of nuclear receptors (NRs), composed of ligand-activated transcription factors, is responsible for gene expression as a reaction to physiological and environmental changes. Transcriptional machinery may require phase separation to fulfil its role. Although NRs have a similar canonical structure, their C-terminal domains (F domains) are considered the least conserved and known regions. This article focuses on the peculiar molecular properties of the intrinsically disordered F domain of the ecdysteroid receptor from the Aedes aegypti mosquito (AaFEcR), the vector of the world's most devastating human diseases such as dengue and Zika. The His-Pro-rich segment of AaFEcR was recently shown to form the unique poly-proline helix II (PPII) in the presence of Cu2+. Here, using widefield microscopy of fluorescently labeled AaFEcR, Zn2+- and Cu2+-induced liquid-liquid phase separation (LLPS) was observed for the first time for the members of NRs. The perspectives of this finding on future research on the F domain are discussed, especially in relation to other NR members.
Collapse
|
2
|
Kolonko M, Bystranowska D, Taube M, Kozak M, Bostock M, Popowicz G, Ożyhar A, Greb-Markiewicz B. The intrinsically disordered region of GCE protein adopts a more fixed structure by interacting with the LBD of the nuclear receptor FTZ-F1. Cell Commun Signal 2020; 18:180. [PMID: 33153474 PMCID: PMC7643343 DOI: 10.1186/s12964-020-00662-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila melanogaster Germ cell-expressed protein (GCE) is a paralog of the juvenile hormone (JH) receptor - Methoprene tolerant protein (MET). Both proteins mediate JH function, preventing precocious differentiation during D. melanogaster development. Despite that GCE and MET are often referred to as equivalent JH receptors, their functions are not fully redundant and show tissue specificity. Both proteins belong to the family of bHLH-PAS transcription factors. The similarity of their primary structure is limited to defined bHLH and PAS domains, while their long C-terminal fragments (GCEC, METC) show significant differences and are expected to determine differences in GCE and MET protein activities. In this paper we present the structural characterization of GCEC as a coil-like intrinsically disordered protein (IDP) with highly elongated and asymmetric conformation. In comparison to previously characterized METC, GCEC is less compacted, contains more molecular recognition elements (MoREs) and exhibits a higher propensity for induced folding. The NMR shifts perturbation experiment and pull-down assay clearly demonstrated that the GCEC fragment is sufficient to form an interaction interface with the ligand binding domain (LBD) of the nuclear receptor Fushi Tarazu factor-1 (FTZ-F1). Significantly, these interactions can force GCEC to adopt more fixed structure that can modulate the activity, structure and functions of the full-length receptor. The discussed relation of protein functionality with the structural data of inherently disordered GCEC fragment is a novel look at this protein and contributes to a better understanding of the molecular basis of the functions of the C-terminal fragments of the bHLH-PAS family. Video abstract.
Collapse
Affiliation(s)
- Marta Kolonko
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland.,National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392, Krakow, Poland
| | - Mark Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Grzegorz Popowicz
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
3
|
Shamilov R, Aneskievich BJ. Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
4
|
In Silico and In Vitro Considerations of Keratinocyte Nuclear Receptor Protein Structural Order for Improving Experimental Analysis. Methods Mol Biol 2019; 2109:93-111. [PMID: 31124000 DOI: 10.1007/7651_2019_240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nuclear receptors (NR) regulate gene expression critical in keratinocyte replication and differentiation. In addition to a ligand-binding domain, NR like other transcription factor families have a DNA-binding domain that must attain a particular conformation for effective interaction with the three-dimensional structure in promoters of target genes for control of their expression. Such protein-DNA assemblies extend the classic "lock and key" idea typified by protein-protein interactions. However, it is becoming increasingly clear that multi-subdomain transcription factors like NR frequently range along the length of the protein from structured, ordered regions expected for interaction with a preset partner to more flexible, intrinsically disordered regions which are more available for diverse posttranslational modifications and/or interaction with differing partners. The extended amino terminus of NR (the A/B subdomain) is one such intrinsically disordered region. Here we provide a primer on in silico-based recognition of amino acid composition and order associated with such conformational flexibility along with adaptations of readily accessible laboratory techniques (e.g., considerations for recombinant expression, sensitivity to protease and proteasome digestion) to facilitate initial prediction and testing for intrinsic disorder in various proteins of interest to keratinocyte biologists, like NR and other transcription factors.
Collapse
|