1
|
Agbo L, Blanchet SA, Kougnassoukou Tchara PE, Fradet-Turcotte A, Lambert JP. Comprehensive Interactome Mapping of Nuclear Receptors Using Proximity Biotinylation. Methods Mol Biol 2022; 2456:223-240. [PMID: 35612745 DOI: 10.1007/978-1-0716-2124-0_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nuclear receptors, including hormone receptors, perform their cellular activities by modulating their protein-protein interactions. They engage with specific ligands and translocate to the nucleus, where they bind the DNA and activate extensive transcriptional programs. Therefore, gaining a comprehensive overview of the protein-protein interactions they establish requires methods that function effectively throughout the cell with fast dynamics and high reproducibility. Focusing on estrogen receptor alpha (ESR1), the founding member of the nuclear receptor family, this chapter describes a new lentiviral system that allows the expression of TurboID-hemagglutinin (HA)-2 × Strep tagged proteins in mammalian cells to perform fast proximity biotinylation assays. Key validation steps for these reagents and their use in interactome mapping experiments in two distinct breast cancer cell lines are described. Our protocol enabled the quantification of ESR1 interactome generated by cellular contexts that were hormone-sensitive or not.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Sophie Anne Blanchet
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Amélie Fradet-Turcotte
- Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Cancer Research Center, Université Laval, Québec, QC, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Québec, QC, Canada.
- Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Center, Québec, QC, Canada.
| |
Collapse
|
2
|
Audet-Walsh É, Wang XQ, Lin SX. Using Omics to better understand steroid biosynthesis, metabolism, and functions. J Steroid Biochem Mol Biol 2020; 202:105686. [PMID: 32437965 DOI: 10.1016/j.jsbmb.2020.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Étienne Audet-Walsh
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada; Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Centre de recherche sur le cancer (CRC), Université Laval, Québec City, QC, Canada.
| | - Xiao Qiang Wang
- Department of Pathology, Peking University Third Hospital, Haidian District, 100091 Beijing, China
| | - Sheng-Xiang Lin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada; Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Centre de recherche sur le cancer (CRC), Université Laval, Québec City, QC, Canada.
| |
Collapse
|
3
|
Guo L, Lin M, Cheng Z, Chen Y, Huang Y, Xu K. Identification of key genes and multiple molecular pathways of metastatic process in prostate cancer. PeerJ 2019; 7:e7899. [PMID: 31637138 PMCID: PMC6800981 DOI: 10.7717/peerj.7899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background Cancer metastasis is well known as the most adverse outcome and the major cause of mortality in cancer patients, including prostate cancer (PCa). There are no credible predictors, to this day, that can reflect the metastatic ability of localized PCa. In the present study, we firstly identified the differentially expressed genes (DEGs) and molecular pathways involved in the metastaic process of PCa by comparing gene expressions of metastaic PCa with localized PCa directly, with the purpose of identifying potential markers or therapeutic targets. Methods The gene expression profiles (GSE6919 and GSE32269) were downloaded from the Gene Expression Omnibus database, which contained 141 tissue samples, including 87 primary localized PCa samples and 54 metastaic PCa samples. After data processing, DEGs were identified by R language using the Student’s t-test adjusted via the Beniamini–Hochberg method. Subsequently, the gene ontology functional and pathway enrichment analyses of DEGs were performed and the protein–protein interaction network was constructed. Hub genes were identified using the plug-in cytoHubba in Cytoscape software by MCC and degree. Furthermore, validation and prognostic significance analysis of the hub genes were performed by UALCAN and gene expression profiling interactive analysis (GEPIA). Results A total of 90 DEGs were identified between localized and metastaic PCa, which consisted of 47 upregulated and 43 downregulated genes. The enriched functions and pathways of the DEGs include catabolic process, cell cycle, response to steroid hormone, extracellular matrix (ECM)-receptor interaction and vascular smooth muscle contraction. A total of 10 genes were identified as hub genes and biological process analysis of hub genes showed that cell cycle phase, cell division, and mitotic cell cycle process were mainly enriched. The expression of hub genes were confirmed in metastaic PCa when compared with localized PCa tissues by The Cancer Genome Atlas database. Moreover, the disease-free survival analysis of hub genes revealed that these genes may play an important role in invasion, progression or recurrence. Therefore, these hub genes might be the key genes contributed to tumor progression or metastasis in PCa and provide candidate therapeutic targets for PCa. Conclusions The present study identified some DEGs between localized and metastaic PCa tissue samples. These key genes might be potential therapeutic targets and biomarkers for the metastaic process of PCa.
Collapse
Affiliation(s)
- Lihuang Guo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Mingyue Lin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhenbo Cheng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yi Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yue Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Keqian Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|