1
|
Van Moortel L, Verhee A, Thommis J, Houtman R, Melchers D, Delhaye L, Van Leene C, Hellemans M, Gevaert K, Eyckerman S, De Bosscher K. Selective Modulation of the Human Glucocorticoid Receptor Compromises GR Chromatin Occupancy and Recruitment of p300/CBP and the Mediator Complex. Mol Cell Proteomics 2024; 23:100741. [PMID: 38387774 PMCID: PMC10957501 DOI: 10.1016/j.mcpro.2024.100741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Exogenous glucocorticoids are frequently used to treat inflammatory disorders and as adjuncts for the treatment of solid cancers. However, their use is associated with severe side effects and therapy resistance. Novel glucocorticoid receptor (GR) ligands with a patient-validated reduced side effect profile have not yet reached the clinic. GR is a member of the nuclear receptor family of transcription factors and heavily relies on interactions with coregulator proteins for its transcriptional activity. To elucidate the role of the GR interactome in the differential transcriptional activity of GR following treatment with the selective GR agonist and modulator dagrocorat compared to classic (ant)agonists, we generated comprehensive interactome maps by high-confidence proximity proteomics in lung epithelial carcinoma cells. We found that dagrocorat and the antagonist RU486 both reduced GR interaction with CREB-binding protein/p300 and the mediator complex compared to the full GR agonist dexamethasone. Chromatin immunoprecipitation assays revealed that these changes in GR interactome were accompanied by reduced GR chromatin occupancy with dagrocorat and RU486. Our data offer new insights into the role of differential coregulator recruitment in shaping ligand-specific GR-mediated transcriptional responses.
Collapse
Affiliation(s)
- Laura Van Moortel
- VIB-UGent Center for Medical Biotechnology, VIB Institute, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annick Verhee
- VIB-UGent Center for Medical Biotechnology, VIB Institute, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jonathan Thommis
- VIB-UGent Center for Medical Biotechnology, VIB Institute, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | | | - Louis Delhaye
- VIB-UGent Center for Medical Biotechnology, VIB Institute, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chloé Van Leene
- VIB-UGent Center for Medical Biotechnology, VIB Institute, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Madeleine Hellemans
- VIB-UGent Center for Medical Biotechnology, VIB Institute, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Inflammation Research Center, VIB Institute, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB Institute, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB Institute, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | - Karolien De Bosscher
- VIB-UGent Center for Medical Biotechnology, VIB Institute, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|