1
|
Kuczynska K, Cmoch P, Rárová L, Jaźwiński J, Korda A, Morzycki JW, Kvasnicová M, Gwardiak K, Karczewski R, Yaghoobi Anzabi M, Luboradzki R, Strnad M, Pakulski Z. In pursuit of cytotoxic triterpenoids. Functionalization of lupane, taraxastane, friedelane, and baccharane derivatives via oxidation with selenium reagents. Eur J Med Chem 2025; 295:117770. [PMID: 40413988 DOI: 10.1016/j.ejmech.2025.117770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
A series of triterpenoids of the lupane, taraxastane, friedelane and baccharane type were oxidized using selenium dioxide (SeO2) and benzeneseleninic anhydride (BSA) under various conditions. Depending on the reaction conditions, different reaction pathways were observed, including dehydrogenation, allylic oxidation, and 1,2-diketone formation. In this way, derivatives functionalized in the triterpene core (especially in rings A, D, and E), difficult to obtain by other methods, can be easily prepared. In some cases, rarely observed α-phenylseleno-ketones were isolated. An unexpected reaction involving the cleavage of the carbon-carbon double bond was observed in the presence of stoichiometric amounts of osmium tetroxide. Further transformations of selected intermediates facilitated the synthesis of new, functionally enriched derivatives. The key reaction pathways were investigated using density functional theory (DFT), focusing on bond length variations and transition states, revealing energetically favored pathways and critical transition structures, including covalent and noncovalent interactions. Solvent and isomerization equilibrium effects were proposed to explain the experimentally observed discrepancies. Cytotoxic activity of selected derivatives was investigated. Derivatives 4 and 38 showed strongest cytotoxicity in cancer cells and fibroblasts (IC50 2.6-26.4 μM); some compounds were selective for G-361 or HeLa cells. These results suggest that they may find application in pharmaceuticals.
Collapse
Affiliation(s)
- Kinga Kuczynska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Lucie Rárová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic.
| | - Jarosław Jaźwiński
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Anna Korda
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jacek W Morzycki
- Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, 15-245, Białystok, Poland
| | - Marie Kvasnicová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic; Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Katarzyna Gwardiak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Romuald Karczewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mohadese Yaghoobi Anzabi
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Zbigniew Pakulski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
2
|
Jena S, Gonzalez G, Vítek D, Kvasnicová M, Štěpánková Š, Strnad M, Voller J, Chanda K. Novel neuroprotective 5,6-dihydropyrido[2',1':2,3]imidazo[4,5-c]quinoline derivatives acting through cholinesterase inhibition and CB2 signaling modulation. Eur J Med Chem 2024; 276:116592. [PMID: 39013357 DOI: 10.1016/j.ejmech.2024.116592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024]
Abstract
A novel group of 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines was prepared via a microwave assisted one-pot telescopic approach. The synthetic sequence involves the formation of an amine precursor of imidazo [1,2-a]pyridine via condensation and reduction under microwave irradiation. Subsequently, the Pictet-Spengler cyclisation reaction occurs with ketones (cyclic or acyclic) to obtain substituted 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines in excellent yields. The compounds were tested as neuroprotective agents. Observed protection of neuron-like cells, SH-SY5Y differentiated with ATRA, in Parkinson's and Huntington's disease models inspired further mechanistic studies of protective activity against damage induced by 1-methyl-4-phenylpyridinium (MPP+), a compound causing Parkinson's disease. The novel compounds exhibit similar or higher potency than ebselen, an established drug with antioxidant activity, in the cells against MPP + -induced total cellular superoxide production and cell death. However, they exhibit a significantly higher capacity to reduce mitochondrial superoxide and preserve mitochondrial membrane potential. We also observed marked differences between a selected derivative and ebselen in terms of normalizing MPP + -induced phosphorylation of Akt and ERK1/2. The cytoprotective activity was abrogated when signaling through cannabinoid receptor CB2 was blocked. The compounds also inhibit both acetylcholine and butyrylcholine esterases. Overall the data show that novel 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinoline have a broad cytoprotective activity which is mediated by several mechanisms including mitoprotection.
Collapse
Affiliation(s)
- Sushovan Jena
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gabriel Gonzalez
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, 77520, Olomouc, Czech Republic
| | - Dominik Vítek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77515, Olomouc, Czech Republic
| | - Marie Kvasnicová
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77515, Olomouc, Czech Republic.
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
3
|
Gromova MA, Kharitonov YV, Golubeva TS, Rybalova TV, Shults EE. Synthesis and anticancer evaluation of new lupane triterpenoid derivatives containing various substituent at the 2 or 3 position. Steroids 2024; 208:109457. [PMID: 38917951 DOI: 10.1016/j.steroids.2024.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Betulonic acid benzyl ester 1 has been subjected to a series of structural modifications for the purpose of new triterpenoid synthesis and evaluating for anticancer activity. The one-pot two step synthesis of 2α-(aminomethyl)betulinic acid benzyl ester derivatives 3a-f (yield 46-69 %) was achieved by the Mannich reaction of compound 1 with methyleneiminium salts, generated in situ from N,N-disubstituted bis(amino)methanes 2a-f by the action of acetyl chloride in dichloromethane, and subsequent reduction of aminomethylation products with sodium borohydride. Minor 2β-(aminomethyl) triterpenoids 4c,d,f were also isolated (yield 6-15 %). We found, that the stereoselective reaction of triterpenoid 1 with acetylides, generated at -78 °C from alkynes in the presence of n-BuLi, has been useful and noteworthy as the key step in providing of new alkyne substituted triterpenoids - benzyl 3-alkynyl-3-deoxy-2(3),20(29)-lupadiene-28-oates or 3-deoxy-2(3)-dehydro-28-oxoallobetulin derivative. The new compounds were examined for anticancer activity against the human cell lines (MTT assay). All tested derivatives were non-toxic on human fibroblasts. The 3-(phenylethynyl)lupa-2(3),20(29)-diene 9 showed selective cytotoxicity on cervical cancer cell lines. Tumor cells death trigged by the most active compound 4f resulted from apoptotic processes. These data make the series of synthesized 2 or 3 substituted lupane derivatives as promising compounds with anticancer potential.
Collapse
Affiliation(s)
- Maria A Gromova
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation
| | - Yurii V Kharitonov
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation
| | - Tatyana S Golubeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Lavrentyev Ave, 8, 630090 Novosibirsk, Russian Federation
| | - Tatyana V Rybalova
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation
| | - Elvira E Shults
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation.
| |
Collapse
|
4
|
Koutsaviti A, Kvasnicová M, Gonzalez G, Štenclová T, Agusti S, Duarte CM, Rarová L, Strnad M, Roussis V, Ioannou E. Isolation and Bioactivity Evaluation of Sesquiterpenes from an Alcyonarian of the Genus Lemnalia from the Saudi Arabian Red Sea. Chem Biodivers 2024; 21:e202400235. [PMID: 38412304 DOI: 10.1002/cbdv.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 02/29/2024]
Abstract
Over the last decades, soft corals have been proven a rich source of biologically active compounds, featuring a wide range of chemical structures. Herein, we investigated the chemistry of an alcyonarian of the genus Lemnalia (Neptheidae), specimens of which were collected from the coral reefs near Al Lith, on the south-west coast of Saudi Arabia. A series of chromatographic separations led to the isolation of 31 sesquiterpenes, featuring mainly the nardosinane and neolemnane carbon skeletons, among which three (13, 14 and 28) are new natural products. The metabolites isolated in sufficient amounts were evaluated in vitro in human tumor and non-cancerous cell lines for a number of biological activities, including their cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activities, as well as for their effect on androgen receptor (AR)-regulated transcription. Among the tested metabolites, compound 12 showed comparable neuroprotective activity to the positive control N-acetylcysteine, albeit at a 10-fold lower concentration.
Collapse
Affiliation(s)
- Aikaterini Koutsaviti
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Marie Kvasnicová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
| | - Gabriel Gonzalez
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
- Department of Neurology, University Hospital in Olomouc, Zdravotníků 248/7, Olomouc, CZ-77900, Czech Republic
| | - Tereza Štenclová
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
| | - Susana Agusti
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Lucie Rarová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
- Department of Neurology, University Hospital in Olomouc, Zdravotníků 248/7, Olomouc, CZ-77900, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
- Department of Neurology, University Hospital in Olomouc, Zdravotníků 248/7, Olomouc, CZ-77900, Czech Republic
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| |
Collapse
|
5
|
Šachlevičiūtė U, Gonzalez G, Kvasnicová M, Štěpánková Š, Kleizienė N, Bieliauskas A, Zatloukal M, Strnad M, Sløk FA, Kvasnica M, Šačkus A, Žukauskaitė A. Synthesis and neuroprotective activity of 3-aryl-3-azetidinyl acetic acid methyl ester derivatives. Arch Pharm (Weinheim) 2023; 356:e2300378. [PMID: 37797174 DOI: 10.1002/ardp.202300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
A library of 3-aryl-3-azetidinyl acetic acid methyl ester derivatives was prepared from N-Boc-3-azetidinone employing the Horner-Wadsworth-Emmons reaction, rhodium(I)-catalyzed conjugate addition of arylboronic acids, and subsequent elaborations to obtain N-unprotected hydrochlorides, N-alkylated and N-acylated azetidine derivatives. The compounds were evaluated for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, revealing several derivatives to possess AChE inhibition comparable to that of the AChE inhibitor rivastigmine. The binding mode of the AChE inhibitor donepezil and selected active compounds 26 and 27 within the active site of AChE was studied using molecular docking. Furthermore, the neuroprotective activity of the prepared compounds was evaluated in models associated with Parkinson's disease (salsolinol-induced) and aspects of Alzheimer's disease (glutamate-induced oxidative damage). Compound 28 showed the highest neuroprotective effect in both salsolinol- and glutamate-induced neurodegeneration models, and its protective effect in the glutamate model was revealed to be driven by a reduction in oxidative stress and caspase-3/7 activity.
Collapse
Affiliation(s)
- Urtė Šachlevičiūtė
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Gabriel Gonzalez
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marie Kvasnicová
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Neringa Kleizienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czech Republic
| | | | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czech Republic
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|