1
|
Andress Huacachino A, Marques CF, Mesaros C, Penning TM. Radioactive Tracing of Testosterone Reveals Minimal Formation of 5α-DHT in SGBS Cells and Human Primary Adipocytes. J Endocr Soc 2025; 9:bvaf087. [PMID: 40421431 PMCID: PMC12105912 DOI: 10.1210/jendso/bvaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Indexed: 05/28/2025] Open
Abstract
Hyperandrogenism is associated with polycystic ovary syndrome (PCOS), acne, and alopecia. In PCOS, subcutaneous fat has been shown to contribute to hyperandrogenism through increased testosterone (T) production which is accompanied by an increase in the intra-adipose 5α-dihydrotestosterone (5α-DHT):T ratio. However, whether 5α-DHT is produced in isolated adipocytes is uncertain. Here we investigated the ability of subcutaneous human adipocytes to synthesize and inactivate 5α-DHT in a model of subcutaneous white adipocytes, Simpson-Golabi-Behmel syndrome (SGBS) cells, and primary adipocytes. We quantified the transcripts of genes involved in the biosynthesis of 5α-DHT (AKR1C3, SRD5A1, SRD5A2, and HSD17B6) and the inactivation of 5α-DHT (AKR1C1 and AKR1C2). We found that genes that inactivate 5α-DHT were more abundantly transcribed than genes that biosynthesize 5α-DHT. This trend was reflected by radioisotope tracing. We developed a radiochromatographic method involving high-performance liquid chromatography and in-line detection of radioactive analytes with precision and accuracy within the 15% tolerance allowable by the US Food and Drug Administration criteria for analytical assays. The lower limit of detection and quantification for 5α-DHT was 3.4 pg and 15 pg, respectively. The formation of 5α-DHT was barely detectable when starting with either 10 nM T or 3α-androstanediol (3α-diol). Conversely, 5α-DHT was rapidly metabolized to 3α-diol but not 3β-diol. 3α-Diol was the major metabolite despite comparable levels of AKR1C1 and AKR1C2 transcripts. The same result was observed in both cell lines. Our data reveal that adipocytes do not biosynthesize 5α-DHT from testosterone. By contrast, 5α-DHT is rapidly metabolized by AKR1C2 in subcutaneous adipocytes.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cátia F Marques
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M Penning
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Lloyd L. PFOA affects androgen metabolism. Nat Rev Urol 2025; 22:4. [PMID: 39643673 DOI: 10.1038/s41585-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|