1
|
Gao S, Liu ZJ, Luo YZ, Yao ZJ. Half-sandwich iridium complexes with hydrazone ligands: preparation, structure, and catalytic synthesis of cyanosilylethers under air. Dalton Trans 2023; 52:11104-11112. [PMID: 37493192 DOI: 10.1039/d3dt01617j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A series of hydrazone-based N,O-chelate half-sandwich iridium complexes were synthesized through a facile route with good yields. These air- and moisture-stable iridium complexes exhibited excellent catalytic activity in the cyanosilylether synthesis under mild reaction conditions. Under the catalysis of iridium, various cyanosilylethers with different substituents were obtained through a one-pot reaction of trimethylsilyl cyanide (TMSCN) with carbonyl substrates, with good to excellent yields. The excellent catalytic efficiency, wide substrate range, and mild reaction conditions made this type of iridium catalyst have the potential for industrial applications. All the half-sandwich iridium complexes were well characterized by IR, NMR, and EA analyses. The molecular structure of iridium complex 1 was confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Song Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Yu-Zhou Luo
- Scientific Research Office, Guangzhou College of Commerce, Guangzhou, 511363, China.
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
2
|
Wang K, Li H, Yang L, Liu ZJ, Yao ZJ. Half-Sandwich Ruthenium Complexes with Hydrazone Ligands: Preparation, Structure, and Catalytic Activity in Cyanosilylether Synthesis under an Air Atmosphere. Inorg Chem 2023. [PMID: 37310847 DOI: 10.1021/acs.inorgchem.3c00819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new class of N,O-coordinate half-sandwich ruthenium complexes supported by hydrazone ligands with a general formula of [Ru(η6-p-cymene)Cl(L)] have been obtained in moderate to excellent yields conveniently. These air- and moisture-stable ruthenium complexes exhibited excellent catalytic activity in cyanosilylether synthesis under mild reaction conditions. Under the catalysis of ruthenium, various cyanosilylethers with different substituents were obtained through a one-pot reaction of trimethylsilyl cyanide with carbonyl substrates, with good to excellent yields. Excellent catalytic efficiency, a wide substrate range, and mild reaction conditions made this type of ruthenium catalyst have potential for industrial application. All of the half-sandwich ruthenium complexes have been well described by infrared, nuclear magnetic resonance, and EA analysis. Molecular structures of ruthenium complexes 1 and 4 were confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Ke Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Heng Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lin Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
3
|
Gómez-Oliveira EP, Méndez N, Iglesias M, Gutiérrez-Puebla E, Aguirre-Díaz LM, Monge MÁ. Building a Green, Robust, and Efficient Bi-MOF Heterogeneous Catalyst for the Strecker Reaction of Ketones. Inorg Chem 2022; 61:7523-7529. [PMID: 35510809 PMCID: PMC9115759 DOI: 10.1021/acs.inorgchem.2c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work, we
present the new [Bi14(μ3-O)9(μ4-O)2(μ3–OH)5(3,5-DSB)5(H2O)3]·7H2O, BiPF-4 (bismuth
polymeric framework—4) MOF, its microwave hydrothermal synthesis,
as well as its behavior as a heterogeneous catalyst in the multicomponent
organic Strecker reaction. The BiPF-4 material shows
a three-dimensional (3D) framework formed by peculiar inorganic oxo-hydroxo-bismutate
layers connected among them through the 3,5-dsb (3,5-disulfobenzoic
acid) linker. These two-dimensional (2D) layers, built by junctions
of Bi7 polyhedra SBU, provide the material of many Lewis acid catalytic
sites because of the mixing in the metal coordination number. BiPF-4 is a highly robust, green, and stable material that
demonstrates an excellent heterogeneous catalytic activity in the
multicomponent Strecker reaction of ketones carried out in one-pot
synthesis, bringing a reliable platform of novel green materials based
on nontoxic and abundant metal sources such as bismuth. In this work, we present the new [Bi14(μ3-O)9(μ4-O)2(μ3−OH)5(3,5-DSB)5(H2O)3]·7H2O, BiPF-4 (bismuth
polymeric framework—4) MOF, its microwave hydrothermal synthesis,
as well as its behavior as a heterogeneous catalyst in the multicomponent
organic Strecker reaction.
Collapse
Affiliation(s)
- Eloy P Gómez-Oliveira
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| | - Nayara Méndez
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| | - Marta Iglesias
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| | - Enrique Gutiérrez-Puebla
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| | - Lina M Aguirre-Díaz
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| | - M Ángeles Monge
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
4
|
Dave AY, Begari E. One‐Pot Synthesis of α‐Aminonitriles in Water Using Iron (III) Tosylate Hexahydrate (Fe(OTs)
3
⋅ 6H
2
O) as a Green Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alpa Y. Dave
- School of Applied Material Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| |
Collapse
|
5
|
Mousapour M, Shirini F. Piperazinium Nano Silica Sulfonate: An Efficient Catalyst for the Hantzsch Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202100535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Maryam Mousapour
- Department of Chemistry College of Science University of Guilan Rasht 41335-19141 Iran
| | - Farhad Shirini
- Department of Chemistry College of Science University of Guilan Rasht 41335-19141 Iran
| |
Collapse
|
6
|
Vinoth G, Indira S, Bharathi M, Alves LG, Martins AM, Shanmuga Bharathi K. Cyanosilylation of carbonyl compounds catalyzed by half-sandwich (η6-p-cymene) Ruthenium(II) complexes bearing heterocyclic hydrazone derivatives. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Bhoite SP, Bansode AH, Suryavanshi G. Radical Rearrangement of Aryl/Alkylidene Malononitriles via Aza Michael Addition/Decynoformylation/Addition Sequence: An Access to α-Aminonitriles and α-Aminoamides. J Org Chem 2020; 85:14858-14865. [DOI: 10.1021/acs.joc.0c01358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shubhangi P. Bhoite
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| | - Ajay H. Bansode
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| |
Collapse
|
8
|
Dalavai R, Gomathi K, Naresh K, Nawaz Khan FR. One-Pot Synthesis of Quinolinyl Amino Nitriles and Their Antidiabetic, Anti-inflammatory, Antioxidant, and Molecular Docking Studies. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1791917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ramesh Dalavai
- Organic and Medicinal Chemistry Laboratory, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kannayiram Gomathi
- Department of Biotechnology, Dr. MGR Educational Research Institute, Chennai Tamil Nadu, India
| | - K. Naresh
- Department of Pharmaceutical and Medicinal Chemistry, G. Pulla Reddy College of Pharmacy, Hyderabad, Telangana, India
| | - Fazlur-Rahman Nawaz Khan
- Organic and Medicinal Chemistry Laboratory, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Kaur G, Shamim M, Bhardwaj V, Gupta VK, Banerjee B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1745844] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| | - Mussarat Shamim
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| | - Vaishali Bhardwaj
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| | - Vivek Kumar Gupta
- Post-Graduate Department of Physics, University of Jammu, Jammu, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| |
Collapse
|
10
|
Mohammadi O, Golestanzadeh M, Abdouss M. Metal‐Free and Ultrasound‐Assisted C–C and O‐Si (O‐Protected) Bond Formation in Cyanosilylation of Aldehydes with TMSCN Catalyzed by Functionalized Graphene Oxide Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201803217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ozra Mohammadi
- Department of ChemistryAmirkabir University of Technology (Tehran Polytechnic) 158754413, Tehran Iran
| | - Mohsen Golestanzadeh
- Department of ChemistryAmirkabir University of Technology (Tehran Polytechnic) 158754413, Tehran Iran
- Department of Organic ChemistryFaculty of ChemistryUniversity of Kashan 8731551167, Kashan Iran
- Child Growth and Development Research CenterResearch Institute for Primordial Prevention of Non-Communicable DiseaseIsfahan University of Medical Sciences, Isfahan 8174673461 I. R. Iran
| | - Majid Abdouss
- Department of ChemistryAmirkabir University of Technology (Tehran Polytechnic) 158754413, Tehran Iran
| |
Collapse
|
11
|
Aswin K, Logaiya K, Sudhan PN, Mansoor SS. An efficient one-pot synthesis of 1,4-dihydropyridine derivatives through Hantzsch reaction catalysed by melamine trisulfonic acid. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2012.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Molybdenum Schiff base complex supported on MNPs as an efficient and easily recyclable catalyst in three-component Strecker reaction for synthesis of α-aminonitrile derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3031-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Goli-Jolodar O, Shirini F, Seddighi M. Introduction of a novel nanosized N-sulfonated Brönsted acidic catalyst for the promotion of the synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. RSC Adv 2016. [DOI: 10.1039/c6ra04148e] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this research NS-C4(DABCO-SO3H)2)·4Cl as a new nano sized N-sulfonic acid was prepared and characterized using different types of methods including FT-IR, 1H NMR, 13C NMR, mass, XRD, TGA, SEM and AFM analysis.
Collapse
Affiliation(s)
| | - Farhad Shirini
- Department of Chemistry
- College of Sciences
- University of Guilan
- Iran
| | | |
Collapse
|
14
|
Singh H, Rajput JK, Arora P, Jigyasa J. Role of (3-aminopropyl)tri alkoxysilanes in grafting of chlorosulphonic acid immobilized magnetic nanoparticles and their application as heterogeneous catalysts for the green synthesis of α-aminonitriles. RSC Adv 2016. [DOI: 10.1039/c6ra20095h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Grafting of SiO2@Fe3O4 nanoparticles with alkoxysilanes for sulphamic acid functionalization and synthesis of α-aminonitriles at room temperature in water.
Collapse
Affiliation(s)
- Harminder Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology
- Jalandhar-144011
- India
| | - Jaspreet Kaur Rajput
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology
- Jalandhar-144011
- India
| | - Priya Arora
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology
- Jalandhar-144011
- India
| | - Jigyasa Jigyasa
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology
- Jalandhar-144011
- India
| |
Collapse
|
15
|
|
16
|
Aswin K, Sheik Mansoor S, Logaiya K, Sudhan SPN, Saleem Malik V, Ramadoss H. Reusable silica-bonded S-sulfonic acid catalyst for three-component synthesis of 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes and 2-amino-4H-pyrans in aqueous ethanol. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1111-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|