1
|
Solgi M, Bagnazari M, Mohammadi M, Azizi A. Thymbra spicata extract and arbuscular mycorrhizae improved the morphophysiological traits, biochemical properties, and essential oil content and composition of Rosemary (Rosmarinus officinalis L.) under salinity stress. BMC PLANT BIOLOGY 2025; 25:220. [PMID: 39966716 PMCID: PMC11834213 DOI: 10.1186/s12870-025-06221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Enhancing the content of essential oils and valuable secondary metabolites is a primary goal for medicinal plant breeders. In this study, the effects of Thymbra spicata extract at concentrations of 0% (C), 10% (TS1), and 20% (TS2), along with mycorrhizal fungus (MF) biofertilizer at a rate of 50 g/2.5 kg of soil, were evaluated on the growth, photosynthetic pigments, relative water content (RWC), proline, protein, malondialdehyde (MDA), catalase (CAT), phenylalanine ammonia-lyase (PAL), and essential oil content and composition of Rosmarinus officinalis L. under varying salinity stress levels of 0 mM (S0), 100 mM (S1), and 200 mM (S2) NaCl. The experiment was conducted as a factorial study within a completely randomized design, with three replications. RESULTS As salinity stress increased, the yield and growth characteristics of the plants declined. However, the applied treatments effectively mitigated the negative effects of salinity. The highest chlorophyll a, b, and total chlorophyll contents were observed in the TS2 + MF treatment under nonsaline conditions. Under S2 salinity stress, carotenoid and anthocyanin contents increased by 38.29% and 11.11%, respectively, with the use of TS2 + MF. Under S1 stress conditions, the proline and soluble sugar content increased by 268% and 44%, respectively, in the MF treatment. Essential oil content was enhanced by 80.43% with the TS2 + MF treatment under S1 stress. Essential oil analysis showed significant increases in camphene (9.71%), β-pinene (43.75%), α-phellandrene (13.3%), geranyl acetate (156%), cineole (21.39%), and β-linalool (5.12%) in the TS2 + MF treatment compared to the control under S1 stress conditions. CONCLUSIONS Among all the treatments, the combined application of TS2 and MF proved to be the most effective in enhancing the morphophysiological and biochemical characteristics of rosemary plants. This treatment not only boosted the production of essential oils and secondary metabolites but also mitigated the detrimental effects of salinity stress. Therefore, it is recommended as a beneficial agricultural practice for improving the productivity and quality of rosemary plants under salinity stress.
Collapse
Affiliation(s)
- Mojtaba Solgi
- Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, 69311, Iran
| | - Majid Bagnazari
- Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, 69311, Iran.
| | - Meisam Mohammadi
- Department of Horticultural Sciences, College of Agriculture, Ilam University, Ilam, 69311, Iran
| | - Afsaneh Azizi
- Department of Horticultural Sciences, College of Agriculture, Shahid Chamran University, Ahvaz, Iran
| |
Collapse
|
2
|
Huang T, Ma K, Wang Y. Characterization and evaluation of the cytotoxic, antioxidant, and anti-human lung cancer properties of copper nanoparticles green-synthesized by fennel extract following the PI3K/AKT/Mtor signaling pathway. PLoS One 2025; 20:e0309207. [PMID: 39787250 PMCID: PMC11717185 DOI: 10.1371/journal.pone.0309207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 01/12/2025] Open
Abstract
This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells. which showed a cytotoxic effect (p<0. 05). Lactate dehydrogenase (LDH) was correspondingly present in a high proportion in the cells, demonstrated upon testing. Together with their cytotoxic properties, CuNPs demonstrated high antioxidative activity. When the concentration of the nano particles was high (100 μg/ml), the ratio of reactive oxygen species (ROS) was reduced as much as 50%, which in turn suggested antioxidant activity. There was plenty of evidence that CuNPs had anti-cancer potential; this has been shown by the effect of the molecules on the PI3K/AKT/mTOR pathway, which was one of the pathways crucial for cancer survival. Western blot analysis and qRT-PCR results indicated a widespread degradation of the proteins in this pathway upon CuNP exposure. Interestingly, there was a declined phosphorylation up to 75% of PI3K, AKT, and mTOR at 100 μg/ml (p<0. 001). In summary, these findings illustrated the mechanisms behind the therapeutic effect of CuNPs, thus making them good targets for the NSCLC treatment. CuNPs have cytotoxic and antioxidant capacity, as well as significant alterations in lung cancers pathway, and therefore they can be considered as anti-cancer candidates.
Collapse
Affiliation(s)
- Tao Huang
- Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China
| | - KaiLi Ma
- Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China
| | - Yihua Wang
- Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Asmare Z, Aragaw BA, Atlabachew M, Wubieneh TA. Kaolin-Supported Silver Nanoparticles as an Effective Catalyst for the Removal of Methylene Blue Dye from Aqueous Solutions. ACS OMEGA 2023; 8:480-491. [PMID: 36643474 PMCID: PMC9835165 DOI: 10.1021/acsomega.2c05265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Water contamination by organic dyes has become a reason for severe environmental pollution and has been threatening the aquatic ecosystem. In this study, kaolin-supported silver nanoparticle (Ag-NP) composites were synthesized by a facile two-step adsorption-reduction method through the reduction of silver ions adsorbed onto locally available, inexpensive, and easily pretreated kaolin surfaces by using sodium borohydride (NaBH4) for the catalytic degradation of methylene blue (MB) dye in aqueous solution. The morphology, structure, surface area, and interaction of the synthesized materials were investigated by scanning electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy, respectively. Characterization results showed the successful growth of Ag-NPs on the kaolin surface. To understand the catalytic degradation performance of the catalyst, batch experiments were carried out using MB dye as a model dye. The catalytic reduction tests confirmed the importance of Ag-NPs and the high catalytic activities of the synthesized Ag-NPs/kaolin composite toward MB dye reduction. The degradation results indicated that the increased Ag-NP content on the kaolin surface through repeating cycles could effectively enhance the removal of MB dye from an aqueous solution. The kinetic analysis of the MB dye degradation of the catalyst has fitted the pseudo-first-order kinetic model. More than 97% removal efficiency was still present after five reuse cycles, demonstrating exceptional stability and reusability of the composite. In conclusion, the Ag-NPs supported kaolin (Ag-NPs/kaolin) composite was found to be a promising catalyst for the excellent catalytic activity to reduce a model dye MB from the aqueous solution in the presence of NaBH4 with catalytic efficiency higher than 97% and a reduction rate constant, k red, higher than 0.86 min-1.
Collapse
Affiliation(s)
- Zinabu
Gashaw Asmare
- Department
of Chemistry, College of Science, Bahir
Dar University, P.O. Box 79, Bahir Dar6000, Ethiopia
| | - Belete Asefa Aragaw
- Department
of Chemistry, College of Science, Bahir
Dar University, P.O. Box 79, Bahir Dar6000, Ethiopia
| | - Minaleshewa Atlabachew
- Department
of Chemistry, College of Science, Bahir
Dar University, P.O. Box 79, Bahir Dar6000, Ethiopia
| | - Tessera Alemneh Wubieneh
- Department
of Materials Science and Engineering, College
of Science, Bahir Dar University, P.O. Box 79, Bahir Dar6000, Ethiopia
| |
Collapse
|
4
|
Daei S, Ziamajidi N, Abbasalipourkabir R, Aminzadeh Z, Vahabirad M. Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression. Chonnam Med J 2022; 58:102-109. [PMID: 36245767 PMCID: PMC9535103 DOI: 10.4068/cmj.2022.58.3.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Bladder cancer is defined as a urinary tract malignancy that threatens men's and women's health. Due to the side effects of common chemotherapies, novel therapeutic strategies are necessary to overcome the issues concerning bladder cancer treatments. Nanotechnology has been suggested as a means to develop the next-generation objectives of cancer diagnosis and treatment among various novel therapies. Owing to the special characteristics that they can offer, silver nanoparticles (AgNPs) were investigated in this study to evaluate their apoptotic impact on bladder cancer 5637 cells. In this study, an MTT assay was conducted and appropriate concentrations of AgNPs were selected. Moreover, reactive oxygen species (ROS) production and apoptosis levels were determined using fluorimetric and Annexin/PI flow cytometry assays, respectively. Moreover, the activity of caspase 3,7, mRNA expression of Bax (Bcl-2-associated X) and Bcl-2 (B-cell lymphoma 2) were assessed based on colorimetric and qRT-PCR methods, respectively. The results indicated that AgNPs can significantly reduce the viability of 5637 cells in a dose-dependent mode as well as having the ability to elevate ROS production. Flow cytometry data showed that AgNPs lead to a remarkable increase in the apoptosis rate as compared with the control. Consistent with this, the induction of apoptosis was revealed by the overexpression of Bax, accompanied by a reduction in Bcl-2 expression compared to the control. Furthermore, AgNPs remarkably stimulated caspase 3,7 activation. In summary, AgNPs can mediate apoptosis in 5637 cells via excessive ROS formation, up-regulating Bax/Bcl-2 expression, and caspase 3,7 activation.
Collapse
Affiliation(s)
- Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zeynab Aminzadeh
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Vahabirad
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Particles Morphology Impact on Cytotoxicity, Hemolytic Activity and Sorption Properties of Porous Aluminosilicates of Kaolinite Group. NANOMATERIALS 2022; 12:nano12152559. [PMID: 35893527 PMCID: PMC9332423 DOI: 10.3390/nano12152559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
A comparative study of the properties of aluminosilicates of the kaolinite (Al2Si2O5(OH)4∙nH2O) group with different particles morphology has been carried out. Under conditions of directed hydrothermal synthesis, kaolinite nanoparticles with spherical, sponge, and platy morphologies were obtained. Raw nanotubular halloysite was used as particles with tubular morphology. The samples were studied by X-ray diffraction, SEM, solid-state NMR, low-temperature nitrogen adsorption, and the dependence of the zeta potential of the samples on the pH of the medium was defined. The sorption capacity with respect to cationic dye methylene blue in aqueous solutions was studied. It was found that sorption capacity depends on particles morphology and decreases in the series spheres-sponges-tubes-plates. The Langmuir, Freundlich, and Temkin models describe experimental methylene blue adsorption isotherms on aluminosilicates of the kaolinite subgroup with different particles morphology. To process the kinetic data, pseudo-first order and pseudo-second order were used. For the first time, studies of the dependence of hemolytic activity and cytotoxicity of aluminosilicate nanoparticles on their morphology were carried out. It was found that aluminosilicate nanosponges and spherical particles are not toxic to human erythrocytes and do not cause their destruction at sample concentrations from 0.1 to 1 mg/g. Based on the results of the MTT test, the concentration value that causes 50% inhibition of cell population growth (IC50, mg/mL) was calculated. For nanotubes, this value turned out to be the smallest—0.33 mg/mL. For samples with platy, spherical and nanosponge morphology, the IC50 values were 1.55, 2.68, and 4.69 mg/mL, respectively.
Collapse
|
6
|
Râpă M, Ţurcanu AA, Matei E, Predescu AM, Pantilimon MC, Coman G, Predescu C. Adsorption of Copper (II) from Aqueous Solutions with Alginate/Clay Hybrid Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7187. [PMID: 34885338 PMCID: PMC8658144 DOI: 10.3390/ma14237187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Massive amounts of industrial and agricultural water around the world are polluted by various types of contaminants that harm the environment and affect human health. Alginic acid is a very versatile green polymer used for heavy metal adsorption due to its availability, biocompatibility, low cost, and non-toxic characteristics. The aim of this paper was to prepare new low-cost hybrid composite beads using sodium alginate with treated montmorillonite and kaolin for the adsorption of copper (Cu) cations. Modified and unmodified clays were investigated by studying their morphology and elemental composition, functional groups, and mean particle size and particle size distribution. The characterization of alginate/clay hybrid composite beads was carried out by evaluating surface morphology (by scanning electron microscopy, SEM), crystallinity (by X-ray diffraction, XRD), and point of zero charge (pHpzc)(Zeta Potential Analyzer). Batch adsorption experiments of alginate/clay hybrid composite beads investigated the effect of metal concentration in the range of 1-4 mg L-1 on Cu(II) removal, adsorption kinetic for maximum 240 min, and Langmuir and Freundlich adsorption isotherms by using atomic absorption spectrometry. The pseudo-second-order kinetic model best fitted the adsorption for alginate/montmorillonite beads (R2 = 0.994), while the diffusion process was predominant for montmorillonite/kaolin beads (R2 = 0.985). The alginate/clay hybrid materials best fitted the Langmuir isotherm model.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (A.M.P.); (M.C.P.); (G.C.)
| | - Anca Andreea Ţurcanu
- Center for Research and Eco-Metallurgical Expertise, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Ecaterina Matei
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (A.M.P.); (M.C.P.); (G.C.)
| | - Andra Mihaela Predescu
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (A.M.P.); (M.C.P.); (G.C.)
| | - Mircea Cristian Pantilimon
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (A.M.P.); (M.C.P.); (G.C.)
| | - George Coman
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (A.M.P.); (M.C.P.); (G.C.)
| | - Cristian Predescu
- Faculty of Materials Sciences and Engineering, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (A.M.P.); (M.C.P.); (G.C.)
| |
Collapse
|