1
|
Trifan IS, Chibac-Scutaru AL, Melinte V, Coseri S. Photopolymerization Pattern of New Methacrylate Cellulose Acetate Derivatives. Polymers (Basel) 2024; 16:560. [PMID: 38399938 PMCID: PMC10892540 DOI: 10.3390/polym16040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Polymeric photocrosslinked networks, of particular interest in the design of materials with targeted characteristics, can be easily prepared by grafting light-sensitive moieties, such as methacrylates, on polymeric chains and, after photochemical reactions, provide materials with multiple applications via photopolymerization. In this work, photopolymerizable urethane-methacrylate sequences were attached to free hydroxyl units of cellulose acetate chains in various proportions (functionalization degree from 5 to 100%) to study the properties of the resulting macromolecules and the influence of the cellulosic material structure on the double bond conversion degree. Additionally, to manipulate the properties of the photocured systems, the methacrylate-functionalized cellulose acetate derivatives were mixed with low molecular weight dimethacrylate derivatives (containing castor oil and polypropylene glycol flexible chains), and the influence of UV-curable composition on the photopolymerization parameters being studied. The achieved data reveal that the addition of dimethacrylate comonomers augmented the polymerization rates and conversion degrees, leading to polymer networks with various microstructures.
Collapse
Affiliation(s)
| | | | - Violeta Melinte
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania; (I.-S.T.); (A.L.C.-S.)
| | - Sergiu Coseri
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania; (I.-S.T.); (A.L.C.-S.)
| |
Collapse
|
2
|
Palanisamy G, Im YM, Muhammed AP, Palanisamy K, Thangarasu S, Oh TH. Fabrication of Cellulose Acetate-Based Proton Exchange Membrane with Sulfonated SiO 2 and Plasticizers for Microbial Fuel Cell Applications. MEMBRANES 2023; 13:581. [PMID: 37367785 DOI: 10.3390/membranes13060581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Developing a hybrid composite polymer membrane with desired functional and intrinsic properties has gained significant consideration in the fabrication of proton exchange membranes for microbial fuel cell applications. Among the different polymers, a naturally derived cellulose biopolymer has excellent benefits over synthetic polymers derived from petrochemical byproducts. However, the inferior physicochemical, thermal, and mechanical properties of biopolymers limit their benefits. In this study, we developed a new hybrid polymer composite of a semi-synthetic cellulose acetate (CA) polymer derivate incorporated with inorganic silica (SiO2) nanoparticles, with or without a sulfonation (-SO3H) functional group (sSiO2). The excellent composite membrane formation was further improved by adding a plasticizer (glycerol (G)) and optimized by varying the SiO2 concentration in the polymer membrane matrix. The composite membrane's effectively improved physicochemical properties (water uptake, swelling ratio, proton conductivity, and ion exchange capacity) were identified because of the intramolecular bonding between the cellulose acetate, SiO2, and plasticizer. The proton (H+) transfer properties were exhibited in the composite membrane by incorporating sSiO2. The composite CAG-2% sSiO2 membrane exhibited a higher proton conductivity (6.4 mS/cm) than the pristine CA membrane. The homogeneous incorporation of SiO2 inorganic additives in the polymer matrix provided excellent mechanical properties. Due to the enhancement of the physicochemical, thermal, and mechanical properties, CAG-sSiO2 can effectively be considered an eco-friendly, low-cost, and efficient proton exchange membrane for enhancing MFC performance.
Collapse
Affiliation(s)
- Gowthami Palanisamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yeong Min Im
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ajmal P Muhammed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Karvembu Palanisamy
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sadhasivam Thangarasu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Oyarce E, Cantero-López P, Roa K, Boulett A, Yáñez O, Santander P, Del C Pizarro G, Sánchez J. Removal of highly concentrated methylene blue dye by cellulose nanofiber biocomposites. Int J Biol Macromol 2023; 238:124045. [PMID: 36934817 DOI: 10.1016/j.ijbiomac.2023.124045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
The contamination of water by dyes in high concentrations is a worldwide concern, and it has prompted the development of efficient, economical, and environmentally friendly materials and technologies for water purification. The hydration and adsorption capacity for methylene blue (MB) in biocomposites (BCs) based on cellulose nanofiber (CNF) (0 to 2 wt%) were studied. BCs were synthesized through a simple and straightforward route and characterized by spectroscopy, microscopic techniques and thermogravimetric analysis, among others. Hydration studies showed that BCs prepared with 2 wt% of CNF can absorb large volumes of water, approximately 2274 % in the case of poly 2-acrylamide-2-methyl-1-propanesulfonic acid (PAMPS)-CNF and 2408 % in poly sodium 4-styrene sulfonate (PSSNa)-CNF. These BCs showed outstanding adsorption capacity for highly concentrated MB solutions (4536 mg g-1 PAMPS-CNF and 11,930 mg g-1 PSSNa-CNF). It was confirmed that the adsorption mechanism is through electrostatic interactions. Finally, BCs showed high MB adsorption efficiency after several sorption-desorption cycles and on a simulated textile effluent. Furthermore, the theoretical results showed a preferential interaction between MB and the semiflexible polymer chains at the lowest energy setting. The development and study of a new adsorbent material with high MB removal performance that is easy to prepare, economical and reusable for potential use in water purification treatments was successfully achieved.
Collapse
Affiliation(s)
- Estefanía Oyarce
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Plinio Cantero-López
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias, Químicas, Viña del Mar, Chile; Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile; Relativistic Molecular Physics Group (ReMoPh), PhD program in Molecular Physical Chemistry, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Karina Roa
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Andrés Boulett
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Osvaldo Yáñez
- Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago, Chile
| | - Paola Santander
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Guadalupe Del C Pizarro
- Departamento de Química, Universidad Tecnológica Metropolitana, J. P. Alessandri 1242, Santiago, Chile
| | - Julio Sánchez
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile.
| |
Collapse
|
4
|
Madih K, El-Shazly A, Elkady M, Aziz AN, Yossuf ME, Khalifa RE. A facile synthesis of cellulose acetate reinforced graphene oxide nanosheets as proton exchange membranes for fuel cell applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|