1
|
Salamat A, Kosar N, Mohyuddin A, Imran M, Zahid MN, Mahmood T. SAR, Molecular Docking and Molecular Dynamic Simulation of Natural Inhibitors against SARS-CoV-2 Mpro Spike Protein. Molecules 2024; 29:1144. [PMID: 38474656 DOI: 10.3390/molecules29051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The SARS-CoV-2 virus and its mutations have affected human health globally and created significant danger for the health of people all around the world. To cure this virus, the human Angiotensin Converting Enzyme-2 (ACE2) receptor, the SARS-CoV-2 main protease (Mpro), and spike proteins were found to be likely candidates for the synthesis of novel therapeutic drug. In the past, proteins were capable of engaging in interaction with a wide variety of ligands, including both manmade and plant-derived small molecules. Pyrus communis L., Ginko bibola, Carica papaya, Syrian rue, and Pimenta dioica were some of the plant species that were studied for their tendency to interact with SARS-CoV-2 main protease (Mpro) in this research project (6LU7). This scenario investigates the geometry, electronic, and thermodynamic properties computationally. Assessing the intermolecular forces of phytochemicals with the targets of the SARS-CoV-2 Mpro spike protein (SP) resulted in the recognition of a compound, kaempferol, as the most potent binding ligand, -7.7 kcal mol-1. Kaempferol interacted with ASP-187, CYS-145, SER-144, LEU 141, MET-165, and GLU-166 residues. Through additional molecular dynamic simulations, the stability of ligand-protein interactions was assessed for 100 ns. GLU-166 remained intact with 33% contact strength with phenolic OH group. We noted a change in torsional conformation, and the molecular dynamics simulation showed a potential variation in the range from 3.36 to 7.44 against a 45-50-degree angle rotation. SAR, pharmacokinetics, and drug-likeness characteristic investigations showed that kaempferol may be the suitable candidate to serve as a model for designing and developing new anti-COVID-19 medicines.
Collapse
Affiliation(s)
- Aqsa Salamat
- Department of Chemistry, University of Management and Technology (UMT), C-II, Johar Town, Lahore 54770, Pakistan
| | - Naveen Kosar
- Department of Chemistry, University of Management and Technology (UMT), C-II, Johar Town, Lahore 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, University of Management and Technology (UMT), C-II, Johar Town, Lahore 54770, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Nauman Zahid
- Department of Biology, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| |
Collapse
|
2
|
Rafiq A, Jabeen T, Aslam S, Ahmad M, Ashfaq UA, Mohsin NUA, Zaki MEA, Al-Hussain SA. A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products. Molecules 2023; 28:4860. [PMID: 37375415 PMCID: PMC10305344 DOI: 10.3390/molecules28124860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2-the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins-were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Tooba Jabeen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
3
|
Jiang X, Zhang Y, Zhang F, Tian J, Zhang L, Zhao X, Cui F. Fungi-enabled pore channel regulation and defect engineering of a novel micro-reactor for treating complex effluents. Phys Chem Chem Phys 2023; 25:8564-8573. [PMID: 36883830 DOI: 10.1039/d2cp05608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Defect engineering has become a significant research area in recent years; however, little has been reported on the biological method for modulating the intrinsic carbon defects of the biochar framework. Herein, a fungi-enabled method for the fabrication of porous carbon/Fe3O4/Ag (PC/Fe3O4/Ag) composites was developed, and the mechanism underlying the hierarchical structure is elucidated for the first time. By regulating the cultivation process of fungi on water hyacinth biomass, a well-developed interconnected structure and carbon defects acting as potential catalytic active sites were formed. This new material with antibacterial, adsorption and photodegradation properties could be an excellent choice for treating the mixed dyestuff effluents with oils and bacteria, also guiding pore channel regulation and defect engineering in materials science. Numerical simulations were carried out to demonstrate the remarkable catalytic activity.
Collapse
Affiliation(s)
- Xiaoying Jiang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Feiyang Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jiashuo Tian
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Liuping Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Xinrui Zhao
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Fengling Cui
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
4
|
Hu X, Xu W, Liu Y, Guo H. Visible Light-Induced Diastereoselective Construction of Trifluoromethylated Cyclobutane Scaffolds through [2+2]-Photocycloaddition and Water-Assisted Hydrodebromination. J Org Chem 2023; 88:2521-2534. [PMID: 36701662 DOI: 10.1021/acs.joc.2c02976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A visible light-induced diastereoselective synthesis of trifluoromethylated cyclobutane derivatives is described, consisting of [2+2]-photocycloaddition and water-assisted hydrodebromination by one pot. Quinolinones, isoquinolinones, and coumarins are able to participate in this one-pot process with 1-bromo-1-trifluoromethylethene. In addition, stereodefined trisubstituted trifluoromethylated cyclobutane alcohols, carboxylic acids, and amines can be obtained in a straightforward manner through the ring opening of lactone or lactam without the loss of original high diastereoselectivity given by the water-tristrimethylsilylsilane coordination. The antineoplastic bioactivities of those compounds are also well studied, which exhibit great antineoplastic potential comparable to cisplatin. In the proposed mechanism, thioxanthone (TX) serves as a dual catalyst and a radical chain pathway may be involved in the hydrodebromination process.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Weibo Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China.,Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai 200032, P. R. China
| | - Yin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
5
|
Ghasemi L, Behzad M, Khaleghian A, Abbasi A, Abedi A. Synthesis and characterization of two new mixed-ligand Cu(II) complexes of a tridentate NN'O type Schiff base ligand and N-donor heterocyclic co-ligands: In vitro anticancer assay, DNA/human leukemia/COVID-19 molecular docking studies, and pharmacophore modeling. Appl Organomet Chem 2022; 36:e6639. [PMID: 35538931 PMCID: PMC9073997 DOI: 10.1002/aoc.6639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Two new mixed-ligand complexes with general formula [Cu(SB)(L')]ClO4 (1 and 2) were synthesized and characterized by different spectroscopic and analytical techniques including Fourier transform infrared (FT-IR) and UV-Vis spectroscopy and elemental analyses. The SB ligand is an unsymmetrical tridentate NN'O type Schiff base ligand that was derived from the condensation of 1,2-ethylenediamine and 5-bromo-2-hydroxy-3-nitrobenzaldehyde. The L' ligand is pyridine in (1) and 2,2'-dimethyl-4,4'-bithiazole (BTZ) in (2). Crystal structure of (2) was also obtained. The two complexes were used as anticancer agents against leukemia cancer cell line HL-60 and showed considerable anticancer activity. The anticancer activity of these complexes was comparable with the standard drug 5-fluorouracil (5-FU). Molecular docking and pharmacophore studies were also performed on DNA (PDB:1BNA) and leukemia inhibitor factor (LIF) (PDB:1EMR) to further investigate the anticancer and anti-COVID activity of these complexes. The molecular docking results against DNA revealed that (1) preferentially binds to the major groove of DNA receptor whereas (2) binds to the minor groove. Complex (2) performed better with 1EMR. The experimental and theoretical results showed good correlation. Molecular docking and pharmacophore studies were also applied to study the interactions between the synthesized complexes and SARS-CoV-2 virus receptor protein (PDB ID:6LU7). The results revealed that complex (2) had better interaction than (1), the free ligands (SB and BTZ), and the standard drug favipiravir.
Collapse
Affiliation(s)
| | | | - Ali Khaleghian
- Biochemistry Department, Faculty of MedicineSemnan University of Medical SciencesSemnanIran
| | - Alireza Abbasi
- School of Chemistry, College of ScienceUniversity of TehranTehranIran
| | - Anita Abedi
- Department of Chemistry, North Tehran BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
6
|
Ullah S, Munir B, Al-Sehemi AG, Muhammad S, Haq IU, Aziz A, Ahmed B, Ghaffar A. Identification of phytochemical inhibitors of SARS-CoV-2 protease 3CL pro from selected medicinal plants as per molecular docking, bond energies and amino acid binding energies. Saudi J Biol Sci 2022; 29:103274. [PMID: 35345871 PMCID: PMC8944115 DOI: 10.1016/j.sjbs.2022.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Recent worldwide outbreak of SARS-COV-2 pandemic has increased the thirst to discover and introduce antiviral drugs to combat it. The bioactive compounds from plant sources, especially terpenoid have protease inhibition activities so these may be much effective for the control of viral epidemics and may reduce the burden on health care system worldwide. Present study aims the use of terpenoid from selected plant source through bioinformatics tools for the inhibition of SARS-COV-2. This study is based on descriptive analysis. The Protein Data Bank and PubChem database were used for the analysis of SARS-COV-2 protease and plant source terpenoids. Molecular docking by using molegro virtual docker (MVD) software was carried out. The findings of study are based on the inhibitory actions of different plant sourced terpenoid against SARS-COV-2. As per the available resources and complementary analysis these phytochemicals have capacity to inhibit 3CLpro protease. The study reports that (3,3-dimethylally) isoflavone (Glycine max), licoleafol (Glycyrrhiza uralensis), myricitrin (Myrica cerifera), thymoquinone (Nigella sativa), bilobalide, ginkgolide A (Ginkgo biloba), Salvinorin A (Salvia divinorum), citral (Backhousia citriodora) and prephenazine (drug) showed high activity against SARS-COV-2 protease 3CLpro. The drug like and ADMET properties revealed that these compounds can safely be used as drugs. Cross structural analysis by using bioinformatics study concludes that these plant source terpenoid compounds can be effectively used as antiprotease drugs for SARS-COV-2 in future.
Collapse
Affiliation(s)
- Sami Ullah
- Department of Chemistry, College Science, King Khalid University, Abha 61413, PO Box, 9004, Saudi Arabia
| | - Bushra Munir
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College Science, King Khalid University, Abha 61413, PO Box, 9004, Saudi Arabia
| | - Shabbir Muhammad
- Department of Physics, College Science, King Khalid University, Abha 61413, PO Box, 9004, Saudi Arabia
| | - Ikram-Ul Haq
- Institute of Biotechnology and Genetic Engineering, IBGE, University of Sindh, Jamshoro 76080, Pakistan
| | - Abida Aziz
- Department of Botany, The Women University, Multan, Pakistan
| | - Bilal Ahmed
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Abdul Ghaffar
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| |
Collapse
|