1
|
Murphy M. Blood Flow Restriction Training: A Tool to Enhance Rehabilitation and Build Athlete Resiliency. Arthrosc Sports Med Rehabil 2025; 7:101022. [PMID: 40297099 PMCID: PMC12034070 DOI: 10.1016/j.asmr.2024.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 04/30/2025] Open
Abstract
Blood flow restriction training (BFRT) is a tool utilized in rehabilitation and injury prevention to improve muscle strength and size, particularly in load-compromised individuals. BFRT facilitates gains in muscular strength and hypertrophy at lower loads, allowing for accelerated recovery and less disuse atrophy. BFRT must be applied appropriately and with caution, particularly in individuals with cardiovascular concerns. There are applications for BFRT across a wide spectrum of human performance training and in rehabilitation of both lower and upper extremity conditions, providing a high-quality adjunct to improve muscle strength, power, and endurance. Level of Evidence Level V, expert opinion.
Collapse
Affiliation(s)
- Mark Murphy
- Center for Sports Performance and Research (CSPaR) at Mass General Brigham, Foxborough, Massachusetts, U.S.A
| |
Collapse
|
2
|
Korakakis V, Korakaki A, Korakaki T, Karanasios S, Kotsifaki R. Trends and Practices on Blood Flow Restriction Training Are Not Largely Aligned With the Contemporary Evidence. Cureus 2025; 17:e81766. [PMID: 40330412 PMCID: PMC12052298 DOI: 10.7759/cureus.81766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
OBJECTIVE To evaluate trends and current clinical practice of physiotherapists on blood flow restriction training (BFRT) application. METHODS An online survey was conducted to assess: a) demographics and professional characteristics, b) specifics of BFRT application, and c) safety and adverse events. We tested using Pearson's Chi-square test whether the physiotherapist's characteristics were independent of their years of experience and formal BFR education. RESULTS Most respondents reported having much confidence (n=47, 44.6%) in using BFRT, and they used it for a mean of 2.6±1.7 years. Significant variability among respondents was found in devices used, limb occlusion pressure calculation methods, the reperfusion scheme, the number of exercises implemented, and the percentage of complete occlusion pressure used for exercising. Most used BFRT in musculoskeletal conditions of the upper and lower limb (n=88, 86.3%), aiming improvements in strength and muscle volume (n=93, 90.3%), by using external load (n=82, 79.6%). The majority of the respondents (n=69, 67.0% attended a short course for BFRT, of which 55.1% (n=56) believed it was not evidence-based. No significant associations were found between the years of experience or attendance in a BFRT course with practices and perceptions of the surveyed physiotherapists (all p>0.05). Conclusion: Current BFRT practices are largely not aligned with contemporary scientific evidence and recommendations.
Collapse
Affiliation(s)
- Vasileios Korakakis
- Department of Health Sciences, University of Nicosia, Nicosia, CYP
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, GRC
- Physiotherapy, Hellenic Orthopaedic Manipulative Therapy Education, Athens, GRC
| | - Alexandra Korakaki
- European School of Physiotherapy, Amsterdam University of Applied Sciences, Amsterdam, NLD
| | - Themida Korakaki
- Department of Cultural Anthropology and Developmental Sociology, Vrije University, Amsterdam, NLD
| | - Stefanos Karanasios
- Physiotherapy, University of West Attica, Athens, GRC
- Physiotherapy, Hellenic Orthopaedic Manipulative Therapy Education, Athens, GRC
| | - Roula Kotsifaki
- Department of Rehabilitation, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, QAT
| |
Collapse
|
3
|
de Lima EP, Tanaka M, Lamas CB, Quesada K, Detregiachi CRP, Araújo AC, Guiguer EL, Catharin VMCS, de Castro MVM, Junior EB, Bechara MD, Ferraz BFR, Catharin VCS, Laurindo LF, Barbalho SM. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024; 12:2096. [PMID: 39335609 PMCID: PMC11428869 DOI: 10.3390/biomedicines12092096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The triad of vascular impairment, muscle atrophy, and cognitive decline represents critical age-related conditions that significantly impact health. Vascular impairment disrupts blood flow, precipitating the muscle mass reduction seen in sarcopenia and the decline in neuronal function characteristic of neurodegeneration. Our limited understanding of the intricate relationships within this triad hinders accurate diagnosis and effective treatment strategies. This review analyzes the interrelated mechanisms that contribute to these conditions, with a specific focus on oxidative stress, chronic inflammation, and impaired nutrient delivery. The aim is to understand the common pathways involved and to suggest comprehensive therapeutic approaches. Vascular dysfunctions hinder the circulation of blood and the transportation of nutrients, resulting in sarcopenia characterized by muscle atrophy and weakness. Vascular dysfunction and sarcopenia have a negative impact on physical function and quality of life. Neurodegenerative diseases exhibit comparable pathophysiological mechanisms that affect cognitive and motor functions. Preventive and therapeutic approaches encompass lifestyle adjustments, addressing oxidative stress, inflammation, and integrated therapies that focus on improving vascular and muscular well-being. Better understanding of these links can refine therapeutic strategies and yield better patient outcomes. This study emphasizes the complex interplay between vascular dysfunction, muscle degeneration, and cognitive decline, highlighting the necessity for multidisciplinary treatment approaches. Advances in this domain promise improved diagnostic accuracy, more effective therapeutic options, and enhanced preventive measures, all contributing to a higher quality of life for the elderly population.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Claudia Rucco P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Edgar Baldi Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17525-902, SP, Brazil
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Research Coordination, UNIMAR Charity Hospital (HBU), University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
4
|
Jønsson AB, Krogh S, Laursen HS, Aagaard P, Kasch H, Nielsen JF. Safety and efficacy of blood flow restriction exercise in individuals with neurological disorders: A systematic review. Scand J Med Sci Sports 2024; 34:e14561. [PMID: 38268066 DOI: 10.1111/sms.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVES This systematic review evaluated the safety and efficacy of blood flow restriction exercise (BFRE) on skeletal muscle size, strength, and functional performance in individuals with neurological disorders (ND). METHODS A literature search was performed in PubMed, CINAHL, and Embase. Two researchers independently assessed eligibility and performed data extraction and quality assessments. ELIGIBILITY CRITERIA Study populations with ND, BFRE as intervention modality, outcome measures related to safety or efficacy. RESULTS Out of 443 studies identified, 16 were deemed eligible for review. Three studies examined the efficacy and safety of BFRE, one study focused on efficacy results, and 12 studies investigated safety. Disease populations included spinal cord injury (SCI), inclusion body myositis (sIBM), multiple sclerosis (MS), Parkinson's disease (PD), and stroke. A moderate-to-high risk of bias was presented in the quality assessment. Five studies reported safety concerns, including acutely elevated pain and rating of perceived exertion levels, severe fatigue, muscle soreness, and cases of autonomic dysreflexia. Two RCTs reported a significant between-group difference in physical function outcomes, and two RCTs reported neuromuscular adaptations. CONCLUSION BFRE seems to be a potentially safe and effective training modality in individuals with ND. However, the results should be interpreted cautiously due to limited quality and number of studies, small sample sizes, and a general lack of heterogeneity within and between the examined patient cohorts.
Collapse
Affiliation(s)
- Anette Bach Jønsson
- Spinal Cord Injury Center of Western Denmark, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
| | - Søren Krogh
- Spinal Cord Injury Center of Western Denmark, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
| | | | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, Muscle Physiology and Biomechanics Research Unit, University of Southern, Odense, Denmark
| | - Helge Kasch
- Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Feldbaek Nielsen
- Spinal Cord Injury Center of Western Denmark, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
- Hammel Neurorehabilitation Centre and University Clinic, Hammel, Denmark
| |
Collapse
|
5
|
Scott BR, Girard O, Rolnick N, McKee JR, Goods PSR. An Updated Panorama of Blood-Flow-Restriction Methods. Int J Sports Physiol Perform 2023; 18:1461-1465. [PMID: 37777193 DOI: 10.1123/ijspp.2023-0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Exercise with blood-flow restriction (BFR) is being increasingly used by practitioners working with athletic and clinical populations alike. Most early research combined BFR with low-load resistance training and consistently reported increased muscle size and strength without requiring the heavier loads that are traditionally used for unrestricted resistance training. However, this field has evolved with several different active and passive BFR methods emerging in recent research. PURPOSE This commentary aims to synthesize the evolving BFR methods for cohorts ranging from healthy athletes to clinical or load-compromised populations. In addition, real-world considerations for practitioners are highlighted, along with areas requiring further research. CONCLUSIONS The BFR literature now incorporates several active and passive methods, reflecting a growing implementation of BFR in sport and allied health fields. In addition to low-load resistance training, BFR is being combined with high-load resistance exercise, aerobic and anaerobic energy systems training of varying intensities, and sport-specific activities. BFR is also being applied passively in the absence of physical activity during periods of muscle disuse or rehabilitation or prior to exercise as a preconditioning or performance-enhancement technique. These various methods have been reported to improve muscular development; cardiorespiratory fitness; functional capacities; tendon, bone, and vascular adaptations; and physical and sport-specific performance and to reduce pain sensations. However, in emerging BFR fields, many unanswered questions remain to refine best practice.
Collapse
Affiliation(s)
- Brendan R Scott
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
- Center for Healthy Aging, Murdoch University, Perth, WA, Australia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| | - Nicholas Rolnick
- The Human Performance Mechanic, CUNY Lehman College, New York, NY, USA
| | - James R McKee
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
| | - Paul S R Goods
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
- Center for Healthy Aging, Murdoch University, Perth, WA, Australia
| |
Collapse
|
6
|
Mahmoud WS, Radwan NL, Ibrahim MM, Hasan S, Alamri AM, Ibrahim AR. Effect of blood flow restriction as a stand-alone treatment on muscle strength, dynamic balance, and physical function in female patients with chronic ankle instability. Medicine (Baltimore) 2023; 102:e35765. [PMID: 37933020 PMCID: PMC10627705 DOI: 10.1097/md.0000000000035765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Blood Flow Restriction (BFR) training has gained popularity as a novel training strategy in athletes and rehabilitation settings in recent years. OBJECTIVE To investigate whether BFR as a stand-alone treatment would affect muscle strength, dynamic balance, and physical function in female patients with chronic ankle instability (CAI). METHODS Thirty-nine patients with CAI were randomly allocated into 1 of 3 groups: BFR as a stand-alone (BFR) group, BFR with rehabilitation (BFR+R) group, and rehabilitation (R) group. All groups trained 3 times per week for 4 weeks. One week before and after the intervention, strength of muscles around ankle joint, 3 dynamic balance indices: Overall Stability Index, Anterior-Posterior Stability Index, and Medial-Lateral Stability Index, and physical function were assessed via an isokinetic dynamometer, the Biodex Balance System, and the Foot and Ankle Disability Index, respectively. RESULTS The strength of muscles around ankle and dynamic balance indices improved significantly in BFR + R and R groups (P < .006), but not in BFR group (P > .006). All dynamic balance indices showed improvement in BFR + R and R groups except the Medial-Lateral Stability Index (P > .006). Foot and Ankle Disability Index increased significantly in BFR + R and R groups (P < .006), however; no improvement occurred in BFR group (P > .006). CONCLUSIONS The BFR as a stand-alone treatment hasn't the ability to improve the strength of muscles around the ankle, dynamic balance, and physical function in females with CAI compared to the BFR + R or the R program. In addition, the strength of muscles around the ankle correlated significantly with both dynamic balance and physical function in BFR + R and R groups.
Collapse
Affiliation(s)
- Waleed S. Mahmoud
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Basic Sciences, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Nadia L. Radwan
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Biomechanics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Marwa M. Ibrahim
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Physical Therapy for Pediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Shahnaz Hasan
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, KSA
| | - Aiyshah M. Alamri
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abeer R. Ibrahim
- Department of Basic Sciences, Faculty of Physical Therapy, Cairo University, Giza, Egypt
- Department of Physiotherapy, Collage of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
7
|
Spiering BA, Weakley J, Mujika I. Effects of Bed Rest on Physical Performance in Athletes: A Systematic and Narrative Review. Sports Med 2023; 53:2135-2146. [PMID: 37495758 PMCID: PMC10587175 DOI: 10.1007/s40279-023-01889-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Athletes can face scenarios in which they are confined to bed rest (e.g., due to injury or illness). Existing research in otherwise healthy individuals indicates that those entering bed rest with the greatest physical performance level might experience the greatest performance decrements, which indirectly suggests that athletes might be more susceptible to the detrimental consequences of bed rest than general populations. Therefore, a comprehensive understanding of the effects of bed rest might help guide the medical care of athletes during and following bed rest. OBJECTIVE This systematic and narrative review aimed to (1) establish the evidence for the effects of bed rest on physical performance in athletes; (2) discuss potential countermeasures to offset these negative consequences; and (3) identify the time-course of recovery following bed rest to guide return-to-sport rehabilitation. METHODS This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four databases were searched (SPORTDiscus, Web of Science, Scopus, and MEDLINE/PubMed) in October of 2022, and studies were included if they were peer-reviewed investigations, written in English, and investigated the effects of horizontal bed rest on changes in physical capacities and qualities in athletes (defined as Tier 3-5 participants). The reporting quality of the research was assessed using a modified version of the Downs & Black checklist. Furthermore, findings from studies that involved participants in Tiers 1-2 were presented and synthesized using a narrative approach. RESULTS Our systematic review of the literature using a rigorous criterion of 'athletes' revealed zero scientific publications. Nevertheless, as a by-product of our search, seven studies were identified that involved apparently healthy individuals who performed specific exercise training prior to bed rest. CONCLUSIONS Based on the limited evidence from studies involving non-athletes who were otherwise healthy prior to bed rest, we generally conclude that (1) bed rest rapidly (within 3 days) decreases upright endurance exercise performance, likely due to a rapid loss in plasma volume; whereas strength is reduced within 5 days, likely due to neural factors as well as muscle atrophy; (2) fluid/salt supplementation may be an effective countermeasure to protect against decrements in endurance performance during bed rest; while a broader array of potentially effective countermeasures exists, the efficacy of these countermeasures for previously exercise-trained individuals requires further study; and (3) athletes likely require at least 2-4 weeks of progressive rehabilitation following bed rest of ≤ 28 days, although the timeline of recovery might need to be extended depending on the underlying reason for bed rest (e.g., injury or illness). Despite these general conclusions from studies involving non-athletes, our primary conclusion is that substantial effort and research is still required to quantify the effects of bed rest on physical performance, identify effective countermeasures, and provide return-to-sport timelines in bona fide athletes. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION Registration ID: osf.io/d3aew; Date: October 24, 2022.
Collapse
Affiliation(s)
- Barry A Spiering
- Sports Research Laboratory, New Balance Athletics, Inc., Boston, MA, USA
| | - Jonathon Weakley
- School of Behavioural and Health Sciences, Australian Catholic University, McAuley at Banyo, Brisbane, QLD, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, QLD, Australia.
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds, UK.
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
8
|
Wedig IJ, Durocher JJ, McDaniel J, Elmer SJ. Blood flow restriction as a potential therapy to restore physical function following COVID-19 infection. Front Physiol 2023; 14:1235172. [PMID: 37546539 PMCID: PMC10400776 DOI: 10.3389/fphys.2023.1235172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Accumulating evidence indicates that some COVID-19 survivors display reduced muscle mass, muscle strength, and aerobic capacity, which contribute to impairments in physical function that can persist for months after the acute phase of illness. Accordingly, strategies to restore muscle mass, muscle strength, and aerobic capacity following infection are critical to mitigate the long-term consequences of COVID-19. Blood flow restriction (BFR), which involves the application of mechanical compression to the limbs, presents a promising therapy that could be utilized throughout different phases of COVID-19 illness. Specifically, we hypothesize that: 1) use of passive BFR modalities can mitigate losses of muscle mass and muscle strength that occur during acute infection and 2) exercise with BFR can serve as an effective alternative to high-intensity exercise without BFR for regaining muscle mass, muscle strength, and aerobic capacity during convalescence. The various applications of BFR may also serve as a targeted therapy to address the underlying pathophysiology of COVID-19 and provide benefits to the musculoskeletal system as well as other organ systems affected by the disease. Consequently, we present a theoretical framework with which BFR could be implemented throughout the progression from acute illness to outpatient rehabilitation with the goal of improving short- and long-term outcomes in COVID-19 survivors. We envision that this paper will encourage discussion and consideration among researchers and clinicians of the potential therapeutic benefits of BFR to treat not only COVID-19 but similar pathologies and cases of acute critical illness.
Collapse
Affiliation(s)
- Isaac J. Wedig
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
| | - John J. Durocher
- Department of Biological Sciences and Integrative Physiology and Health Sciences Center, Purdue University Northwest, Hammond, IN, United States
| | - John McDaniel
- Department of Exercise Physiology, Kent State University, Kent, OH, United States
| | - Steven J. Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
9
|
Spiering BA, Clark BC, Schoenfeld BJ, Foulis SA, Pasiakos SM. Maximizing Strength: The Stimuli and Mediators of Strength Gains and Their Application to Training and Rehabilitation. J Strength Cond Res 2023; 37:919-929. [PMID: 36580280 DOI: 10.1519/jsc.0000000000004390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT Spiering, BA, Clark, BC, Schoenfeld, BJ, Foulis, SA, and Pasiakos, SM. Maximizing strength: the stimuli and mediators of strength gains and their application to training and rehabilitation. J Strength Cond Res 37(4): 919-929, 2023-Traditional heavy resistance exercise (RE) training increases maximal strength, a valuable adaptation in many situations. That stated, some populations seek new opportunities for pushing the upper limits of strength gains (e.g., athletes and military personnel). Alternatively, other populations strive to increase or maintain strength but cannot perform heavy RE (e.g., during at-home exercise, during deployment, or after injury or illness). Therefore, the purpose of this narrative review is to (a) identify the known stimuli that trigger gains in strength; (b) identify the known factors that mediate the long-term effectiveness of these stimuli; (c) discuss (and in some cases, speculate on) potential opportunities for maximizing strength gains beyond current limits; and (d) discuss practical applications for increasing or maintaining strength when traditional heavy RE cannot be performed. First, by conceptually deconstructing traditional heavy RE, we identify that strength gains are stimulated through a sequence of events, namely: giving maximal mental effort, leading to maximal neural activation of muscle to produce forceful contractions, involving lifting and lowering movements, training through a full range of motion, and (potentially) inducing muscular metabolic stress. Second, we identify factors that mediate the long-term effectiveness of these RE stimuli, namely: optimizing the dose of RE within a session, beginning each set of RE in a minimally fatigued state, optimizing recovery between training sessions, and (potentially) periodizing the training stimulus over time. Equipped with these insights, we identify potential opportunities for further maximizing strength gains. Finally, we identify opportunities for increasing or maintaining strength when traditional heavy RE cannot be performed.
Collapse
Affiliation(s)
- Barry A Spiering
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Ohio University, Athens, Ohio; and
| | | | - Stephen A Foulis
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
10
|
Watson R, Sullivan B, Stone A, Jacobs C, Malone T, Heebner N, Noehren B. Blood Flow Restriction Therapy: An Evidence-Based Approach to Postoperative Rehabilitation. JBJS Rev 2022; 10:01874474-202210000-00001. [PMID: 36191086 DOI: 10.2106/jbjs.rvw.22.00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
➢ Blood flow restriction therapy (BFRT) involves the application of a pneumatic tourniquet cuff to the proximal portion of the arm or leg. This restricts arterial blood flow while occluding venous return, which creates a hypoxic environment that induces many physiologic adaptations. ➢ BFRT is especially useful in postoperative rehabilitation because it produces muscular hypertrophy and strength gains without the need for heavy-load exercises that are contraindicated after surgery. ➢ Low-load resistance training with BFRT may be preferable to low-load or high-load training alone because it leads to comparable increases in strength and hypertrophy, without inducing muscular edema or increasing pain.
Collapse
Affiliation(s)
- Richard Watson
- University of Kentucky, Department of Physical Therapy, Lexington, Kentucky
| | - Breanna Sullivan
- University of Kentucky, Department of Orthopaedic Surgery and Sports Medicine, Lexington, Kentucky
| | - Austin Stone
- University of Kentucky, Department of Orthopaedic Surgery and Sports Medicine, Lexington, Kentucky
| | - Cale Jacobs
- University of Kentucky, Department of Orthopaedic Surgery and Sports Medicine, Lexington, Kentucky
| | - Terry Malone
- University of Kentucky, Department of Physical Therapy, Lexington, Kentucky
| | - Nicholas Heebner
- University of Kentucky, Sports Medicine Research Institute, Lexington, Kentucky
| | - Brian Noehren
- University of Kentucky, Department of Physical Therapy, Lexington, Kentucky
| |
Collapse
|
11
|
Rodrigues S, Forte P, Dewaele E, Branquinho L, Teixeira JE, Ferraz R, Barbosa TM, Monteiro AM. Effect of Blood Flow Restriction Technique on Delayed Onset Muscle Soreness: A Systematic Review. Medicina (B Aires) 2022; 58:medicina58091154. [PMID: 36143831 PMCID: PMC9505400 DOI: 10.3390/medicina58091154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The effect of the blood flow restriction technique (BFR) on delayed onset muscular soreness (DOMS) symptoms remains unclear. Since there is no consensus in the literature, the aim of the present study is to systematically identify and appraise the available evidence on the effects of the BFR technique on DOMS, in healthy subjects. Materials and Methods: Computerized literature search in the databases Pubmed, Google Scholar, EBSCO, Cochrane and PEDro to identify randomized controlled trials that assessed the effects of blood flow restriction on delayed onset muscular soreness symptoms. Results: Eight trials met the eligibility criteria and were included in this review, presenting the results of 118 participants, with a mean methodological rating of 6/10 on the PEDro scale. Conclusions: So far, there is not enough evidence to confirm or refute the influence of BFR on DOMS, and more studies with a good methodological basis are needed, in larger samples, to establish protocols and parameters of exercise and intervention. Data analysis suggests a tendency toward the proinflammatory effect of BFR during high restrictive pressures combined with eccentric exercises, while postconditioning BFR seems to have a protective effect on DOMS. Prospero ID record: 345457, title registration: “Effect of Blood Flow Restriction Technique on the Prevention of Delayed Onset Muscle Soreness: A Systematic Review”.
Collapse
Affiliation(s)
- Sandra Rodrigues
- FP-I3ID, FP-BHS, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia, 334, 4200-253 Porto, Portugal
- Correspondence:
| | - Pedro Forte
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - Eva Dewaele
- FP-I3ID, FP-BHS, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia, 334, 4200-253 Porto, Portugal
| | - Luís Branquinho
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - José E. Teixeira
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - Ricardo Ferraz
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
- Department of Sports Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Tiago M. Barbosa
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - António M. Monteiro
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| |
Collapse
|
12
|
Short-term effects of isometric exercise with local and systemic hypoxia and normoxia on fatigue and muscle function in trained men. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Reina-Ruiz ÁJ, Galán-Mercant A, Molina-Torres G, Merchán-Baeza JA, Romero-Galisteo RP, González-Sánchez M. Effect of Blood Flow Restriction on Functional, Physiological and Structural Variables of Muscle in Patients with Chronic Pathologies: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1160. [PMID: 35162182 PMCID: PMC8835162 DOI: 10.3390/ijerph19031160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023]
Abstract
The main objective of this systematic review of the current literature is to analyze the changes that blood flow restriction (BFR) causes in subjects with neuro-musculoskeletal and/or systemic pathologies focusing on the following variables: strength, physiological changes, structural changes and cardiocirculatory variables. The search was carried out in seven databases, including randomized clinical trials in which therapeutic exercise was combined with the blood flow restriction tool in populations with musculoskeletal pathologies. Outcome variables are strength, structural changes, physiological changes and cardiocirculatory variables. Twenty studies were included in the present study. Although there is a lot of heterogeneity between the interventions and evaluation instruments, we observed how the restriction of blood flow presents significant differences in the vast majority of the variables analyzed. In addition, we observed how BFR can become a supplement that provides benefits when performed with low intensity, similar to those obtained through high-intensity muscular efforts. The application of the BFR technique can provide benefits in the short and medium term to increase strength, muscle thickness and cardiovascular endurance, even improving the physiological level of the cardiovascular system. In addition, BFR combined with low-load exercises also achieves benefits comparable to high-intensity exercises without the application of BFR, benefiting patients who are unable to lift high loads.
Collapse
Affiliation(s)
- Álvaro Jesús Reina-Ruiz
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, Arquitecto Francisco Peñalosa, 3, 29071 Málaga, Spain; (Á.J.R.-R.); (R.P.R.-G.); (M.G.-S.)
| | - Alejandro Galán-Mercant
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education, Sciences University of Cádiz, 11002 Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, 11002 Cádiz, Spain
| | - Guadalupe Molina-Torres
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Nursing and Physiotherapy, University of Almeria, 04120 Almeria, Spain
| | - Jose Antonio Merchán-Baeza
- Centre for Health and Social Care Research (CESS), Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Science and Welfare, University of Vic-Central University of Catalonia (UVIC-UCC), C. Sagrada Família, 7, 08500 Vic, Spain;
| | - Rita Pilar Romero-Galisteo
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, Arquitecto Francisco Peñalosa, 3, 29071 Málaga, Spain; (Á.J.R.-R.); (R.P.R.-G.); (M.G.-S.)
- Instituto de Investigación Biomédica de Málaga, IBIMA, Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| | - Manuel González-Sánchez
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, Arquitecto Francisco Peñalosa, 3, 29071 Málaga, Spain; (Á.J.R.-R.); (R.P.R.-G.); (M.G.-S.)
- Instituto de Investigación Biomédica de Málaga, IBIMA, Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| |
Collapse
|
14
|
Blood Flow Restriction Therapy and Its Use for Rehabilitation and Return to Sport: Physiology, Application, and Guidelines for Implementation. Arthrosc Sports Med Rehabil 2022; 4:e71-e76. [PMID: 35141538 PMCID: PMC8811521 DOI: 10.1016/j.asmr.2021.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Blood flow restriction (BFR) is an expanding rehabilitation modality that uses a tourniquet to reduce arterial inflow and occlude venous outflow in the setting of resistance training or exercise. Initially, this technique was seen as a way to stimulate muscular development, but improved understanding of its physiologic benefits and mechanism of action has allowed for innovative clinical applications. BFR represents a way to decrease stress placed on the joints without compromising improvements in strength, whereas for postoperative, injured, or load-compromised individuals BFR represents a way to accelerate recovery and prevent atrophy. There is also growing evidence to suggest that it augments cardiovascular fitness and attenuates pain. The purpose of this review is to highlight the physiology and evidence behind the various applications of BFR, with a focus on postoperative rehabilitation. While much remains to be learned, it is clear that blood flow restriction therapy stimulates muscle hypertrophy via a synergistic response to metabolic stress and mechanical tension, with supplemental benefits on cardiovascular fitness and pain. New forms of BFR and expanding applications in postoperative patients and athletes hold promise for expedited recovery. Continued adherence to rehabilitation guidelines and exploration of BFRs physiology and various applications will help optimize its effect and prescription. Level of Evidence V, expert opinion.
Collapse
|
15
|
He N, Zhang Y, Zhang L, Zhang S, Ye H. Relationship Between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview. Front Cardiovasc Med 2021; 8:743710. [PMID: 34957238 PMCID: PMC8695853 DOI: 10.3389/fcvm.2021.743710] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of population aging, aging-related diseases have become a challenge for governments worldwide. Sarcopenia has defined as a clinical syndrome associated with age-related loss such as skeletal muscle mass, strength, function, and physical performance. It is commonly seen in elderly patients with chronic diseases. Changes in lean mass are common critical determinants in the pathophysiology and progression of cardiovascular diseases (CVDs). Sarcopenia may be one of the most important causes of poor physical function and decreased cardiopulmonary function in elderly patients with CVDs. Sarcopenia may induce CVDs through common pathogenic pathways such as malnutrition, physical inactivity, insulin resistance, inflammation; these mechanisms interact. In this study, we aimed to investigate the relationship between sarcopenia and CVDs in the elderly. Further research is urgently needed to understand better the relationship, pathophysiology, clinical presentation, diagnostic criteria, and mechanisms of sarcopenia and CVDs, which may shed light on potential interventions to improve clinical outcomes and provide greater insight into the disorders above.
Collapse
Affiliation(s)
- Nana He
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yuelin Zhang
- Department of Medicine, University of Ningbo, Ningbo, China
| | - Lu Zhang
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| | - Shun Zhang
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Honghua Ye
- Department of Cardiology, HwaMei Hospital (Previously Named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
16
|
Liu Q, Deng J, Qiu Y, Gao J, Li J, Guan L, Lee H, Zhou Q, Xiao J. Non-coding RNA basis of muscle atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1066-1078. [PMID: 34786211 PMCID: PMC8569427 DOI: 10.1016/j.omtn.2021.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy is a common complication of many chronic diseases including heart failure, cancer cachexia, aging, etc. Unhealthy habits and usage of hormones such as dexamethasone can also lead to muscle atrophy. However, the underlying mechanisms of muscle atrophy are not completely understood. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in muscle atrophy. This review mainly discusses the regulation of ncRNAs in muscle atrophy induced by various factors such as heart failure, cancer cachexia, aging, chronic obstructive pulmonary disease (COPD), peripheral nerve injury (PNI), chronic kidney disease (CKD), unhealthy habits, and usage of hormones; highlights the findings of ncRNAs as common regulators in multiple types of muscle atrophy; and summarizes current therapies and underlying mechanisms for muscle atrophy. This review will deepen the understanding of skeletal muscle biology and provide new strategies and insights into gene therapy for muscle atrophy.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jiali Deng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Qiulian Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Bielitzki R, Behrendt T, Behrens M, Schega L. Time to Save Time: Beneficial Effects of Blood Flow Restriction Training and the Need to Quantify the Time Potentially Saved by Its Application During Musculoskeletal Rehabilitation. Phys Ther 2021; 101:6315163. [PMID: 34228788 DOI: 10.1093/ptj/pzab172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/14/2021] [Accepted: 06/06/2021] [Indexed: 11/14/2022]
Abstract
The main goal of musculoskeletal rehabilitation is to achieve the pre-injury and/or pre-surgery physical function level with a low risk of re-injury. Blood flow restriction (BFR) training is a promising alternative to conventional therapy approaches during musculoskeletal rehabilitation because various studies support its beneficial effects on muscle mass, strength, aerobic capacity, and pain perception. In this perspective article, we used an evidence-based progressive model of a rehabilitative program that integrated BFR in 4 rehabilitation phases: (1) passive BFR, (2) BFR combined with aerobic training, (3) BFR combined with low-load resistance training, and (4) BFR combined with low-load resistance training and traditional high-load resistance training. Considering the current research, we propose that a BFR-assisted rehabilitation has the potential to shorten the time course of therapy to reach the stage where the patient is able to tolerate resistance training with high loads. The information and arguments presented are intended to stimulate future research, which compares the time to achieve rehabilitative milestones and their physiological bases in each stage of the musculoskeletal rehabilitation process. This requires the quantification of BFR training-induced adaptations (eg, muscle mass, strength, capillary-to-muscle-area ratio, hypoalgesia, molecular changes) and the associated changes in performance with a high measurement frequency (≤1 week) to test our hypothesis. This information will help to quantify the time saved by BFR-assisted musculoskeletal rehabilitation. This is of particular importance for patients, because the potentially accelerated recovery of physical functioning would allow them to return to their work and/or social life earlier. Furthermore, other stakeholders in the health care system (eg, physicians, nurses, physical therapists, insurance companies) might benefit from that with regard to work and financial burden.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Department of Orthopedics, University Medicine Rostock, Rostock, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
18
|
Wang B, Xiao S, Yu C, Zhou J, Fu W. Effects of Transcranial Direct Current Stimulation Combined With Physical Training on the Excitability of the Motor Cortex, Physical Performance, and Motor Learning: A Systematic Review. Front Neurosci 2021; 15:648354. [PMID: 33897361 PMCID: PMC8062775 DOI: 10.3389/fnins.2021.648354] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 01/28/2023] Open
Abstract
Purpose: This systematic review aims to examine the efficacy of transcranial direct current stimulation (tDCS) combined with physical training on the excitability of the motor cortex, physical performance, and motor learning. Methods: A systematic search was performed on PubMed, Web of Science, and EBSCO databases for relevant research published from inception to August 2020. Eligible studies included those that used a randomized controlled design and reported the effects of tDCS combined with physical training to improve motor-evoked potential (MEP), dynamic posture stability index (DPSI), reaction time, and error rate on participants without nervous system diseases. The risk of bias was assessed by the Cochrane risk of bias assessment tool. Results: Twenty-four of an initial yield of 768 studies met the eligibility criteria. The risk of bias was considered low. Results showed that anodal tDCS combined with physical training can significantly increase MEP amplitude, decrease DPSI, increase muscle strength, and decrease reaction time and error rate in motor learning tasks. Moreover, the gain effect is significantly greater than sham tDCS combined with physical training. Conclusion: tDCS combined with physical training can effectively improve the excitability of the motor cortex, physical performance, and motor learning. The reported results encourage further research to understand further the synergistic effects of tDCS combined with physical training.
Collapse
Affiliation(s)
- Baofeng Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Changxiao Yu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
19
|
Saatmann N, Zaharia OP, Loenneke JP, Roden M, Pesta DH. Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends Endocrinol Metab 2021; 32:106-117. [PMID: 33358931 DOI: 10.1016/j.tem.2020.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D.
Collapse
Affiliation(s)
- Nina Saatmann
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD eV), Partner Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD eV), Partner Düsseldorf, Germany
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, Oxford, MS, USA
| | - Michael Roden
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD eV), Partner Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Dominik H Pesta
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD eV), Partner Düsseldorf, Germany; Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Ferlito JV, Pecce SAP, Oselame L, De Marchi T. The blood flow restriction training effect in knee osteoarthritis people: a systematic review and meta-analysis. Clin Rehabil 2020; 34:1378-1390. [DOI: 10.1177/0269215520943650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: To synthesize evidence on the effects of blood flow restriction (BFR) comparing with high (HLT) and low load (LLT), and on the influence of different forms of application in individuals with knee osteoarthritis. Data sources: The CENTRAL, PEDro, PubMed and BVS, which include Lilacs, Medline and SciELO, until April 2020. Review methods: A systematic review and meta-analysis of randomized trials used the PRISMA guidelines, whose main keywords were: Therapeutic Occlusion, Resistance Training, and Knee Osteoarthritie, blood flow restriction and Kaatsu training. Method quality was evaluated with the PEDro scale. When studies demonstrated homogeneity on outcome measures, the mean differences or standardized mean differences with 95% confidence interval were calculated and pooled in a meta-analysis for pooled synthesis. Results: Five articles were eligible in this review with moderate to low risk bias. Our results, showed no difference between BFR and HLT in knee strength (SMD = 0.00, 95% CI, –0.54 to 0.54, P = 1.00), function (SMD = −0.20, 95% CI, –0.45 to 0.06, P = 0.13), pain and volume. But, when compared BFR and LLT, the descriptive analysis demonstrated significant results in favor BFR to muscle strength (71.4% of measurement) and volume (MD = 1.66, 95% CI, 0.93 to 2.38, P < 0.00001), but not in pain or function. Conclusion: BFR can be used as a strategy in the rehabilitation of osteoarthritis due to gains in strength and volume with low mechanical stress. However, its application must be safe and individualized, since they can attenuate the stimuli offered by BFR.
Collapse
Affiliation(s)
- João Vitor Ferlito
- Department of Physiotherapy of University Center Cenecista of Bento Gonçalves, Bento Gonçalves, Rio Grande do Sul, Brazil
| | - Samantha Angelica Pasa Pecce
- Department of Physiotherapy of University Center Cenecista of Bento Gonçalves, Bento Gonçalves, Rio Grande do Sul, Brazil
| | - Lucas Oselame
- Department of Physiotherapy of University Center Cenecista of Bento Gonçalves, Bento Gonçalves, Rio Grande do Sul, Brazil
| | - Thiago De Marchi
- Department of Physiotherapy of University Center Cenecista of Bento Gonçalves, Bento Gonçalves, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Minniti MC, Statkevich AP, Kelly RL, Rigsby VP, Exline MM, Rhon DI, Clewley D. The Safety of Blood Flow Restriction Training as a Therapeutic Intervention for Patients With Musculoskeletal Disorders: A Systematic Review. Am J Sports Med 2020; 48:1773-1785. [PMID: 31710505 DOI: 10.1177/0363546519882652] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The effectiveness of blood flow restriction training (BFRT) as compared with other forms of training, such as resistance training, has been evaluated in the literature in clinical and nonclinical populations. However, the safety of this intervention has been summarized only in healthy populations and not in clinical populations with musculoskeletal disorders. PURPOSE To evaluate the safety and adverse events associated with BFRT in patients with musculoskeletal disorders. STUDY DESIGN Systematic review. METHODS A literature search was conducted with 3 online databases (MEDLINE, CINAHL, and Embase). Eligibility criteria for selecting studies were as follows: (1) BFRT was used as a clinical intervention, (2) study participants had a disorder of the musculoskeletal system, (3) authors addressed adverse events, (4) studies were published in English, and (5) the intervention was performed with human participants. RESULTS Nineteen studies met eligibility criteria, with a pooled sample size of 322. Diagnoses included various knee-related disorders, inclusion body myositis, polymyositis or dermatomyositis, thoracic outlet syndrome, Achilles tendon rupture, and bony fractures. Nine studies reported no adverse events, while 3 reported rare adverse events, including an upper extremity deep vein thrombosis and rhabdomyolysis. Three case studies reported common adverse events, including acute muscle pain and acute muscle fatigue. In the randomized controlled trials, individuals exposed to BFRT were not more likely to have an adverse event than individuals exposed to exercise alone. Of the 19 studies, the adverse events were as follows: overall, 14 of 322; rare overall, 3 of 322; rare BFRT, 3 of 168; rare control, 0 of 154; any adverse BFRT, 10 of 168; any adverse control, 4 of 154. A majority of studies were excluded because they did not address safety. CONCLUSION BFRT appears to be a safe strengthening approach for knee-related musculoskeletal disorders, but further research is needed to make definitive conclusions and to evaluate the safety in other musculoskeletal conditions. Improved definitions of adverse events related to BFRT are needed to include clear criteria for differentiating among common, uncommon, and rare adverse events. Finally, further research is needed to effectively screen who might be at risk for rare adverse events.
Collapse
Affiliation(s)
- Melissa C Minniti
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Andrew P Statkevich
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Ryan L Kelly
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Victoria P Rigsby
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Meghan M Exline
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| | - Daniel I Rhon
- Physical Performance Service Line, Office of the Army Surgeon General, Falls Church, Virginia, USA.,Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Derek Clewley
- Division of Physical Therapy, Department of Orthopedics, Duke University, Durham, North Carolina, USA
| |
Collapse
|