5
|
Zhao S, Zhang Y, Chen W, Li W, Wang S, Wang L, Zhao Y, Lin M, Ye Y, Lin J, Zheng Y, Liu J, Zhao H, Yan Z, Yang Y, Huang Y, Lin G, Chen Z, Zhang Z, Liu S, Jin L, Wang Z, Chen J, Niu Y, Li X, Wu Y, Wang Y, Du R, Gao N, Zhao H, Yang Y, Liu Y, Tian Y, Li W, Zhao Y, Liu J, Yu B, Zhang N, Yu K, Yang X, Li S, Xu Y, Hu J, Liu Z, Shen J, Zhang S, Su J, Khanshour AM, Kidane YH, Ramo B, Rios JJ, Liu P, Sutton VR, Posey JE, Wu Z, Qiu G, Wise CA, Zhang F, Lupski JR, Zhang J, Wu N. Diagnostic yield and clinical impact of exome sequencing in early-onset scoliosis (EOS). J Med Genet 2020; 58:41-47. [PMID: 32381727 DOI: 10.1136/jmedgenet-2019-106823] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Early-onset scoliosis (EOS), defined by an onset age of scoliosis less than 10 years, conveys significant health risk to affected children. Identification of the molecular aetiology underlying patients with EOS could provide valuable information for both clinical management and prenatal screening. METHODS In this study, we consecutively recruited a cohort of 447 Chinese patients with operative EOS. We performed exome sequencing (ES) screening on these individuals and their available family members (totaling 670 subjects). Another cohort of 13 patients with idiopathic early-onset scoliosis (IEOS) from the USA who underwent ES was also recruited. RESULTS After ES data processing and variant interpretation, we detected molecular diagnostic variants in 92 out of 447 (20.6%) Chinese patients with EOS, including 8 patients with molecular confirmation of their clinical diagnosis and 84 patients with molecular diagnoses of previously unrecognised diseases underlying scoliosis. One out of 13 patients with IEOS from the US cohort was molecularly diagnosed. The age at presentation, the number of organ systems involved and the Cobb angle were the three top features predictive of a molecular diagnosis. CONCLUSION ES enabled the molecular diagnosis/classification of patients with EOS. Specific clinical features/feature pairs are able to indicate the likelihood of gaining a molecular diagnosis through ES.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Weiyu Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Shanghai, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yongyu Ye
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Orthopedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yu Zheng
- School of Finance, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China.,School of Ophthalmology & Optometry and Eye Hospital, School of BiomedicalEngineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yongxin Yang
- Machine Intelligence Group, University of Edinburgh, Edinburgh, UK
| | - Yingzhao Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Guanfeng Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zefu Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhen Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lichao Jin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhaoyang Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jingdan Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Na Gao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Tian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenli Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Na Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Keyi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shugang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianhua Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhe Liu
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, School of BiomedicalEngineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Brandon Ramo
- Department of Orthopaedic Surgery, Scottish Rite for Children, Dallas, Texas, USA
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Shanghai, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | | |
Collapse
|
7
|
Einarsdottir E, Grauers A, Wang J, Jiao H, Escher SA, Danielsson A, Simony A, Andersen M, Christensen SB, Åkesson K, Kou I, Khanshour AM, Ohlin A, Wise C, Ikegawa S, Kere J, Gerdhem P. CELSR2 is a candidate susceptibility gene in idiopathic scoliosis. PLoS One 2017; 12:e0189591. [PMID: 29240829 PMCID: PMC5730153 DOI: 10.1371/journal.pone.0189591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/29/2017] [Indexed: 01/24/2023] Open
Abstract
A Swedish pedigree with an autosomal dominant inheritance of idiopathic scoliosis was initially studied by genetic linkage analysis, prioritising genomic regions for further analysis. This revealed a locus on chromosome 1 with a putative risk haplotype shared by all affected individuals. Two affected individuals were subsequently exome-sequenced, identifying a rare, non-synonymous variant in the CELSR2 gene. This variant is rs141489111, a c.G6859A change in exon 21 (NM_001408), leading to a predicted p.V2287I (NP_001399.1) change. This variant was found in all affected members of the pedigree, but showed reduced penetrance. Analysis of tagging variants in CELSR1-3 in a set of 1739 Swedish-Danish scoliosis cases and 1812 controls revealed significant association (p = 0.0001) to rs2281894, a common synonymous variant in CELSR2. This association was not replicated in case-control cohorts from Japan and the US. No association was found to variants in CELSR1 or CELSR3. Our findings suggest a rare variant in CELSR2 as causative for idiopathic scoliosis in a family with dominant segregation and further highlight common variation in CELSR2 in general susceptibility to idiopathic scoliosis in the Swedish-Danish population. Both variants are located in the highly conserved GAIN protein domain, which is necessary for the auto-proteolysis of CELSR2, suggesting its functional importance.
Collapse
Affiliation(s)
- Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| | - Anna Grauers
- Department of Orthopaedics, Sundsvall and Härnösand County Hospital, Sundsvall, Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Jingwen Wang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hong Jiao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Stefan A. Escher
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Aina Danielsson
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgren Academy at Gothenburg University, Göteborg, Sweden
- Department of Orthopaedics, Sahlgren University Hospital, Göteborg, Sweden
| | - Ane Simony
- Sector for Spine Surgery & Research, Middelfart Hospital, Middelfart, Denmark
| | - Mikkel Andersen
- Sector for Spine Surgery & Research, Middelfart Hospital, Middelfart, Denmark
| | | | - Kristina Åkesson
- Lund University, Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Malmö, Sweden
- Skåne University Hospital, Department of Orthopedics, Malmö, Sweden
| | - Ikuyo Kou
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Anas M. Khanshour
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, United States of America
| | - Acke Ohlin
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Carol Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, United States of America
- McDermott Center for Human Growth and Development and Departments of Pediatrics and Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Juha Kere
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Medical & Molecular Genetics, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Paul Gerdhem
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Orthopaedics, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|