1
|
Han C, Cui Y, Guo Y, Zhang D, Wang X, Geng Y, Shi W, Bao Y. Proteome and transcriptome analysis revealed florfenicol via affected drug metabolism and lipid metabolism induce liver injury of broilers. Poult Sci 2021; 100:101228. [PMID: 34293615 PMCID: PMC8319801 DOI: 10.1016/j.psj.2021.101228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/21/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
In order to explore the mechanism of liver injury induced by florfenicol (FFC) in broilers. Sixty broilers were randomly divided into 2 groups: control group: normal drinking water and feed were given every d; FFC group: tap water containing FFC (0.15g/L) was given every d and feed was taken freely; each group was given 5 dd of continuous medication and feed was taken freely. The results showed that compared with the control group, FFC could significantly inhibit the weight gain of broilers (P < 0.05), and significantly inhibit the expression of CYP1A1 and CYP2H1 in liver tissue (P < 0.05). It was found that the expression of genes related to the effect of cytochrome P450 on the metabolism of exogenous substances, the peroxisome proliferators-activated receptors signal pathway, peroxisome pathway and glutathione metabolic pathway in the liver of broilers. The results of qPCR of UDP glucuronosyltransferase family 2A1 (UGT2A1), glutathione S-transferase-like 2 (GSTAL2), hematopoietic prostaglandin D synthase (HPGDS), glutathione S-transferase theta 1(GSTT1), isocitrate dehydrogenase (NADP(+)) 1 (IDH1), acyl-CoA oxidase 2 (ACOX2), fatty acid binding protein 1 (FABP1), adenylosuccinate lyase (ADSL), and phosphoribosyl aminoim idazolesuccino carboxamide synthase (PAICS) genes which were randomly selected from the most significant genes were consistent with those of RNA-seq. The results showed that FFC can affect the drug metabolism and lipid synthesis in the liver of broiler, thus impairing the normal function of liver and the growth and development of broiler.
Collapse
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yuqing Cui
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yiwei Guo
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Di Zhang
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yumeng Geng
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China; Hebei Veterinary Biotechnology Innovation Center, Baoding 071000, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China; Hebei Veterinary Biotechnology Innovation Center, Baoding 071000, China
| |
Collapse
|
2
|
The Evaluation of Genetic Profiles of UGT1A4 and UGT1A6 in the Turkish Population. JOURNAL OF CONTEMPORARY MEDICINE 2021. [DOI: 10.16899/jcm.836287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Alsultan A, Alghamdi WA, Alghamdi J, Alharbi AF, Aljutayli A, Albassam A, Almazroo O, Alqahtani S. Clinical pharmacology applications in clinical drug development and clinical care: A focus on Saudi Arabia. Saudi Pharm J 2020; 28:1217-1227. [PMID: 33132716 PMCID: PMC7584801 DOI: 10.1016/j.jsps.2020.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Drug development, from preclinical to clinical studies, is a lengthy and complex process. There is an increased interest in the Kingdom of Saudi Arabia (KSA) to promote innovation, research and local content including clinical trials (Phase I-IV). Currently, there are over 650 registered clinical trials in Saudi Arabia, and this number is expected to increase. An important part of drug development and clinical trials is to assure the safe and effective use of drugs. Clinical pharmacology plays a vital role in informed decision making during the drug development stage as it focuses on the effects of drugs in humans. Disciplines such as pharmacokinetics, pharmacodynamics and pharmacogenomics are components of clinical pharmacology. It is a growing discipline with a range of applications in all phases of drug development, including selecting optimal doses for Phase I, II and III studies, evaluating bioequivalence and biosimilar studies and designing clinical studies. Incorporating clinical pharmacology in research as well as in the requirements of regulatory agencies will improve the drug development process and accelerate the pipeline. Clinical pharmacology is also applied in direct patient care with the goal of personalizing treatment. Tools such as therapeutic drug monitoring, pharmacogenomics and model informed precision dosing are used to optimize dosing for patients at an individual level. In KSA, the science of clinical pharmacology is underutilized and we believe it is important to raise awareness and educate the scientific community and healthcare professionals in terms of its applications and potential. In this review paper, we provide an overview on the use and applications of clinical pharmacology in both drug development and clinical care.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Wael A Alghamdi
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Jahad Alghamdi
- The Saudi Biobank, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abeer F Alharbi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | | | - Ahmed Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|