1
|
Mehta D, Krishnani KK, Verma AK, Kumar N, Abisha R, Roy U. Hydrogel and fish mucus mediated semi-biofloc formation, nitrogenous stress mitigation and growth performance of fish in integrated bioremediation system of aquaculture. Microb Pathog 2025; 203:107487. [PMID: 40090501 DOI: 10.1016/j.micpath.2025.107487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/23/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Intensive aquaculture system tends to produce excessive ammonia and other nitrogenous metabolites and microbial load, which lead to abiotic and biotic stresses in fish. Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. In the present study, 90-days experiments were conducted at two stocking densities 80 and 160 per m3 fish (7.15 ± 0.05 g) coupled with xanthan gum (ED1) and sweet potato powder (ED2) for mitigation of priority stresses in Labeo rohita. Highest average body weight (17.71 ± 0.15 g), average daily gain (0.12 ± 0.01 g), specific growth rate (1.02 ± 0.01 g day-1), percentage weight gain (150.73 ± 1.01) and feed efficiency ratio (1.00 ± 0.01) were found in 80 fish per m3 coupled with ED2. Bacterial counts (2.6 × 106 CFU ml-1) and removal efficiency of total ammonia-N (97.6 %) and nitrite-N (99.99 %) were significantly(P < 0.05) higher in 160 fish per m3 coupled with ED2. Maturation of biofloc bacterial biomass and bio-stimulatory effects were found to be the major mechanism. Fish mucus was found to be bactericidal mostly against fish pathogenic bacteria Aeromonas hydrophila and Edwardsiella tarda due to antagonistic effect of probiotic microbiome of green slime. Bacteria as safe candidate probionts in fish health management have been isolated and identified as Bacillus spp based on 16S rDNA and FAME approaches. Low level of catalase and SOD was observed in gill, muscle and liver in treatments, indicating stress alleviation to the culture organisms. For the first time, coupling of fish green slime with hydrogel has newly been coined an integrated hydrogel-mucus-based bioremediation system. The investigation of fish mucus has a very important biological and environmental roles in potential applications in species diversification and climate-resilient aquaculture and culture-based fisheries.
Collapse
Affiliation(s)
- Divya Mehta
- ICAR-Central Institute of Fisheries Education, Andheri West, Mumbai, 400061, India
| | | | - Ajit Kumar Verma
- ICAR-Central Institute of Fisheries Education, Andheri West, Mumbai, 400061, India
| | - Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - R Abisha
- ICAR-Central Institute of Fisheries Education, Andheri West, Mumbai, 400061, India
| | - Udipta Roy
- ICAR-Regional Research and Training Centre of ICAR-CIFE, Motipur, Muzaffarpur, India
| |
Collapse
|
2
|
Speckmann B, Jordan PM, Werz O, Hofstetter RK, Ehring E, Vogel ML, Venema K. Bacillusmegaterium DSM 32963 Enhances Specialized Pro-Resolving Mediator Production from an n-3 PUFA Salt in a Dynamic Model of the Human Intestine. Metabolites 2025; 15:105. [PMID: 39997730 PMCID: PMC11857772 DOI: 10.3390/metabo15020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been used in the treatment of inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS), and their effects are potentiated upon conversion to specialized pro-resolving mediators (SPM). Recent studies indicated that the probiotic bacterial strain Bacillus megaterium DSM 32963 can be used to enhance the production of SPM and its precursors in vivo. METHODS Here, we explored the contribution of Bacillus megaterium DSM 32963 to SPM production in a validated, dynamic model of the upper and lower intestine. The TIM-1 and TIM-2 models were applied, with the TIM-2 model inoculated with the fecal microbiota of healthy individuals and probed with an n-3 PUFA lysine salt with and without Bacillus megaterium DSM 32963 or an SPM-enriched fish oil or placebo. Kinetics of SPM production were assessed by metabololipidomics analysis, and survival and engraftment of the Bacillus megaterium strain was monitored by plate counting and by strain-specific qPCR. RESULTS Bacillus megaterium DSM 32963 poorly survived TIM-1 conditions but propagated in the TIM-2 model, where it enabled the metabolism of n-3 PUFA to SPM (resolvin E2 and protectin DX) and SPM precursors (e.g., 5-hydroxyeicosapentaenoic acid (5-HEPE), 15-HEPE, 18-HEPE, 4-hydroxydocosahexaenoic acid (4-HDHA), 10-HDHA, and 17-HDHA, among other EPA- and DHA-derived metabolites) with significantly higher levels of lipid mediator production compared to the n-3 PUFA lysine salt alone; esterified n-3 PUFA were hardly converted by the microbiota. CONCLUSIONS These findings reinforce that Bacillus megaterium DSM 32963 facilitates SPM production in situ from bioavailable n-3 PUFA in the large intestine, highlighting its use to complement eukaryotic SPM biosynthesis by the host and its possible therapeutic use for, e.g., IBD and IBS.
Collapse
Affiliation(s)
- Bodo Speckmann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (E.E.); (M.-L.V.)
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.M.J.); (O.W.); (R.K.H.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.M.J.); (O.W.); (R.K.H.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Robert K. Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.M.J.); (O.W.); (R.K.H.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ellen Ehring
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (E.E.); (M.-L.V.)
| | - Marie-Luise Vogel
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (E.E.); (M.-L.V.)
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands;
| |
Collapse
|
3
|
Zhao H, Xie Y, Li Z, Wei L, Ai R. Optimization of Fermentation Conditions for Increasing Erucamide Content in Bacillus megaterium Using Several Accelerants. Microorganisms 2025; 13:108. [PMID: 39858876 PMCID: PMC11767610 DOI: 10.3390/microorganisms13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/27/2025] Open
Abstract
As a food packaging sliding agent, erucamide is widely used in the field of food packaging, but the traditional synthesis method of erucamide faces the problems of insufficient raw materials and low yield of colza oil. Our laboratory has found that Bacillus megaterium L2 has the potential to produce erucamide. This study aims to improve the ability of B. megaterium L2 to produce erucamide by adding various accelerants to optimize the fermentation conditions. Univariate and orthogonal tests showed that 0.3% Tween 80, 0.004% Ca2+, 0.04% colza oil, and 0.02% chloroform were the best regulation conditions for erucamide production of the L2 strain, and erucamide content reached 1.778 mg/L, which was 32.59% higher than the blank group and 60.26% higher than before fermentation culture. The mechanism of membrane metabolism in the L2 strain was further investigated, and our data suggested that the conductivity, nucleic acid and protein content, and β-galactosidase activity of L2 were increased significantly after treatment with accelerants, indicating that the accelerants changed the cell membrane permeability of the L2 strain but did not harm or kill the bacteria. Moreover, GC-MS analysis of the cell membrane fatty acids of the L2 strain showed that the ratio of unsaturated to saturated fatty acid components increased from 0.893 to 1.856, which increased the fluidity and reduced the rigidity of the cell membrane. This study could provide some theoretical reference for microbial erucamide fermentation.
Collapse
Affiliation(s)
- Hao Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (H.Z.); (Y.X.); (L.W.); (R.A.)
| | - Yudan Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (H.Z.); (Y.X.); (L.W.); (R.A.)
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (H.Z.); (Y.X.); (L.W.); (R.A.)
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang 550009, China
| | - Longfeng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (H.Z.); (Y.X.); (L.W.); (R.A.)
| | - Renli Ai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (H.Z.); (Y.X.); (L.W.); (R.A.)
| |
Collapse
|
4
|
Liu S, Zhao L, Li M, Zhu Y, Liang D, Ma Y, Sun L, Zhao G, Tu Q. Probiotic Bacillus as fermentation agents: Status, potential insights, and future perspectives. Food Chem X 2024; 22:101465. [PMID: 38798797 PMCID: PMC11127159 DOI: 10.1016/j.fochx.2024.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Probiotic Bacillus strains can solve the problems of single flavor and long fermentation time of fermented products caused by the lack of certain functional genes and insufficient metabolism ability of fermenter strains (Lactobacillus and Bifidobacterium) at the present stage. There is a lack of systematic evaluation and review of probiotic Bacillus as food fermentation agents. In this paper, it is observed that probiotic Bacillus strains are involved to varying degrees in liquid-state, semi-solid state, and solid-state fermentation and are widely present in solid-state fermented foods. Probiotic Bacillus strains not only produce abundant proteases and lipases, but also effective antifungal lipopeptides and extracellular polymers, thus enhancing the flavor, nutritional value and safety of fermented foods. Bacillus with probiotic qualities is an underutilized group of probiotic food fermentation agents, which give a potential for the development of fermentation technology in the food business and the integration of ancient traditional fermentation techniques.
Collapse
Affiliation(s)
- Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - LingXia Sun
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qiancheng Tu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
5
|
Golnari M, Bahrami N, Milanian Z, Rabbani Khorasgani M, Asadollahi MA, Shafiei R, Fatemi SSA. Isolation and characterization of novel Bacillus strains with superior probiotic potential: comparative analysis and safety evaluation. Sci Rep 2024; 14:1457. [PMID: 38228716 PMCID: PMC10791968 DOI: 10.1038/s41598-024-51823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Despite the current use of some Bacillus spp. as probiotics, looking for and introducing new efficient and safe potential probiotic strains is one of the most important topics in both microbiology and food industry. This study aimed to isolate, identify, and evaluate the probiotic characteristics and safety of some Bacillus spp. from natural sources. Thirty-six spore-forming, Gram-positive, and catalase-positive Bacillus isolates were identified in 54 samples of soil, feces and dairy products. Bacterial identification was performed using 16S rDNA sequencing. To evaluate the probiotic potential of isolates, the resistance of bacterial cells to simulated gastrointestinal tract (GIT) conditions, the presence of enterotoxin genes, their susceptibility to antibiotics, antimicrobial and hemolytic activities and biochemical profiles were investigated. The results revealed that eight sporulating Bacillus spp. isolates fulfilled all tested probiotic criteria. They showed a high growth rate, non-hemolytic and lecithinase activity, and resistance to simulated GIT conditions. These strains exhibited broad-spectrum antibacterial activity against pathogenic bacteria. In addition, they did not exhibit antibacterial resistance to the 12 tested antibiotics. The results of this study suggest that these isolates can be considered as candidates for functional foods and as safe additives to improve diet quality.
Collapse
Affiliation(s)
- Mohsen Golnari
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Nastaran Bahrami
- Department of Microbiology, NourDanesh Institute of Higher Education, Meymeh, Iran
| | - Zahra Milanian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Rabbani Khorasgani
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Rasoul Shafiei
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Safa-Ali Fatemi
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
6
|
Puan SL, Erriah P, Baharudin MMAA, Yahaya NM, Kamil WNIWA, Ali MSM, Ahmad SA, Oslan SN, Lim S, Sabri S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl Microbiol Biotechnol 2023; 107:5569-5593. [PMID: 37450018 DOI: 10.1007/s00253-023-12651-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohamad Malik Al-Adil Baharudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, 31499, Asan-Si, Chungnam, Republic of Korea
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Liu JM, Liang YT, Wang SS, Jin N, Sun J, Lu C, Sun YF, Li SY, Fan B, Wang FZ. Antimicrobial activity and comparative metabolomic analysis of Priestia megaterium strains derived from potato and dendrobium. Sci Rep 2023; 13:5272. [PMID: 37002283 PMCID: PMC10066289 DOI: 10.1038/s41598-023-32337-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The growth of endophytic bacteria is influenced by the host plants and their secondary metabolites and activities. In this study, P. megaterium P-NA14 and P. megaterium D-HT207 were isolated from potato tuber and dendrobium stem respectively. They were both identified as Priestia megaterium. The antimicrobial activities and metabolites of both strains were explored. For antimicrobial activities, results showed that P. megaterium P-NA14 exhibited a stronger inhibition effect on the pathogen of dendrobium, while P. megaterium D-HT207 exhibited a stronger inhibition effect on the pathogen of potato. The supernatant of P. megaterium P-NA14 showed an inhibition effect only on Staphylococcus aureus, while the sediment of P. megaterium D-HT207 showed an inhibition effect only on Escherichia coli. For metabolomic analysis, the content of L-phenylalanine in P. megaterium P-NA14 was higher than that of P. megaterium D-HT207, and several key downstream metabolites of L-phenylalanine were associated with inhibition of S. aureus including tyrosine, capsaicin, etc. Therefore, we speculated that the different antimicrobial activities between P. megaterium P-NA14 and P. megaterium D-HT207 were possibly related to the content of L-phenylalanine and its metabolites. This study preliminarily explored why the same strains isolated from different hosts exhibit different activities from the perspective of metabolomics.
Collapse
Affiliation(s)
- Jia-Meng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Tian Liang
- College of Pharmacy, Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Shan-Shan Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuo Jin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Lu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Feng Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Ying Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Feng-Zhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Bacillus Metabolites: Compounds, Identification and Anti-Candida albicans Mechanisms. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Candida albicans seriously threatens human health, especially for immunosuppressed groups. The antifungal agents mainly include azoles, polyenes and echinocandins. However, the few types of existing antifungal drugs and their resistance make it necessary to develop new antifungal drugs. Bacillus and its metabolites has antifungal activity against pathogenic fungi. This review introduces the application of Bacillus metabolites in the control of C. albicans in recent years. Firstly, several compounds produced by Bacillus spp. are listed. Then the isolation and identification techniques of Bacillus metabolites in recent years are described, including high-precision separation technology and omics technology for the separation of similar components of Bacillus metabolites. The mechanisms of Bacillus metabolites against C. albicans are distinguished from the inhibition of pathogenic fungi and inhibition of the fungal virulence factors. The purpose of this review is to systematically summarize the recent studies on the inhibition of pathogenic fungi by Bacillus metabolites. The review is expected to become the reference for the control of pathogenic fungi such as C. albicans and the application of Bacillus metabolites in the future.
Collapse
|
9
|
Singh V, Sheikh A, Abourehab MAS, Kesharwani P. Dostarlimab as a Miracle Drug: Rising Hope against Cancer Treatment. BIOSENSORS 2022; 12:617. [PMID: 36005013 PMCID: PMC9406030 DOI: 10.3390/bios12080617] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 05/03/2023]
Abstract
Immunotherapy is one of the four pillars of cancer treatment that has recently emerged as a beacon of hope for cancer patients. Certain immunotherapies, for example, immune checkpoint inhibitor therapy, monoclonal antibody therapy and chimeric antigen T-cell therapy have garnered extensive interest in response to their exceptional properties that activate the immune system to respond to cancer cells, inhibiting their progression. In the era of rapid development, dostarlimab, an anti-programmed cell death protein (PD-1) monoclonal antibody has mesmerized the medical profession by showing complete (100%) cure of patients with colorectal cancer. Not only this, the results obtained from clinical trials revealed no major side effects in any of the participants in the study. Dostarlimab has also shown promising results in endometrial cancer, ovarian cancer, melanoma, head and neck cancer, and breast cancer therapy. This review focuses upon the action of immunotherapy, extensively emphasizing the miraculous therapy to activate T-cells for cancer treatment. Based on this, we discuss major ongoing clinical trials and combination immunotherapies to enlighten future clinicians and researchers about the response of dostarlimab against various cancers.
Collapse
Affiliation(s)
- Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
10
|
Microbial Biopesticides against Bacterial, Fungal and Oomycete Pathogens of Tomato, Cabbage and Chickpea. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological control is an environmentally friendly approach that holds promise to complement or replace chemicals to effectively protect crop plants against pests and pathogens. Environmental samples with highly diverse and competitive microbiomes that harbor antagonistic microbes with diverse modes-of-action can provide a rich source of microbial biopesticides. In the current study, bacteria isolated from rhizosphere soil and food spoilage samples were subsequently screened against various plant fungal and oomycete pathogens in growth inhibition assays. These included the new potential biocontrol bacteria Corynebacterium flavescens, Sporosarcina aquimarina and Sporosarcina saromensis with anti-fungal and antioomycete activities. Potential candidates selected by preliminary screening in plant assays were then applied to tomato, cabbage and chickpea plants to control bacterial (Pseudomonas syringae pv. tomato), fungal (Alternaria brassicicola) and oomycete (Phytophtora medicaginis) phytopathogens. Ten potential microbial biopesticides were demonstrated to be effective against these diseases, and led to significant (p < 0.05) reductions in symptoms and/or pathogen DNA compared to mock-treated diseased plants. We conclude that new and effective microbial biopesticides to control crop pathogens can be rapidly isolated from biodiverse microbiomes, where bacteria may employ these features to effectively compete against each other.
Collapse
|
11
|
Bacitracin and isothiocyanate functionalized silver nanoparticles for synergistic and broad spectrum antibacterial and antibiofilm activity with selective toxicity to bacteria over mammalian cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112649. [PMID: 35034824 DOI: 10.1016/j.msec.2022.112649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
Silver nanoparticles functionalized with bacitracin (BA), a cyclic peptide and isothiocyanate (ITC), a natural plant product, was fabricated. The particle size of AgNP-BA&ITC was optimized using full factorial design. The optimized particles were of 10-15 nm in size as seen under TEM and showed chemical signature of both bacitracin as well as isothiocynate in FTIR spectroscopy. XRD analysis confirmed the crystalline nature of these particles. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) showed 21 mg/g silver content in AgNP-BA &ITC. These nanoparticles exhibited MIC in the range of 12.5-25 μg/mL and > 3 log10 reduction in cell viability for both Gram positive and Gram-negative bacteria. They clearly demonstrated biofilm inhibition (BIC90 = 150-400 μg/mL) as well as were capable of eradicating both young and mature preformed biofilms as observed by live/dead imaging and crystal violet assay. Further cytotoxicity assay suggests high selectivity (IC50/MIC90 value = 15.2-30.4) of these particles. The results in the present investigation provide role of these novel nanoparticles having substantially low silver content with reduced toxicity and good antibacterial and antibiofilm activity for external wound healing applications.
Collapse
|
12
|
Geraldi A, Famunghui M, Abigail M, Siona Saragih CF, Febitania D, Elmarthenez H, Putri CA, Putri Merdekawati UAS, Sadila AY, Wijaya NH. Screening of antibacterial activities of Bacillus spp. isolated from the Parangkusumo coastal sand dunes, Indonesia. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: The emergence of multidrug-resistant bacteria because of poor understanding of the issue and the misuse of antibiotics has become global health concern. Therefore, the discovery of novel antibacterial drugs is urgently needed. New antibacterial compounds may be found in the Bacillus species, which are abundant in sand dune ecosystems. Herein, we examined samples from the Parangkusumo coastal sand dunes in Indonesia.Methods: Samples were collected from three areas in the sand dunes (the area closest to the sea, the core area of sand dunes, and the area farthest from the sea). The samples were inoculated on Luria Bertani agar. Morphological and molecular identification was performed on the basis of 16S rRNA. The samples’ antimicrobial activity was evaluated with the disc diffusion method and compared with that of opportunistic pathogenic bacteria.Results: Five species of Bacillus were successfully isolated from the Parangkusumo coastal sand dunes. To our knowledge, this is the first report of the isolation of Bacillus aryabhattai in Indonesia. All samples showed antimicrobial activity against pathogenic bacteria. B. velezensis and B. subtilis showed antibacterial activity against Gram-positive bacteria, whereas B. aryabhattai and B. megaterium showed antibacterial activity against Gram-negative bacteria, and B. spizizenii showed antibacterial activity toward Gram-positive and Gram-negative bacteria.Conclusion: Five Bacillus species were successfully isolated from the Parangkusumo coastal sand dunes, Indonesia, and all samples showed antimicrobial activity toward opportunistic pathogenic bacteria. The crude antimicrobial compounds from B. megaterium, B. aryabhattai, B. subtilis, and B. spizizenii showed the highest growth-inhibition activity against E. coli, P. aeruginosa, B. cereus, and S. aureus, respectively.
Collapse
Affiliation(s)
- Almando Geraldi
- University-Center of Excellence-Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Margareth Famunghui
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Mercyana Abigail
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | | | - Devina Febitania
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Henrietta Elmarthenez
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Cinantya Aulia Putri
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Aliffa Yusti Sadila
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Nabilla Hapsari Wijaya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
13
|
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 2021; 105:5719-5737. [PMID: 34263356 PMCID: PMC8390425 DOI: 10.1007/s00253-021-11424-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Abstract Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. Key points • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.
Collapse
|
14
|
Vaca J, Ortiz A, Sansinenea E. Bacillus sp. Bacteriocins: Natural Weapons against Bacterial Enemies. Curr Med Chem 2021; 29:2093-2108. [PMID: 34047258 DOI: 10.2174/0929867328666210527093041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, antibiotic-resistant pathogenic bacteria are emerging as an important health problem worldwide. The search for new compounds with antibiotic characteristics is the most promising alternative. Bacteriocins are natural compounds that are inhibitory against pathogens, and Bacillus species are the major producers of these compounds, which have shown antimicrobial activity against clinically important bacteria. These peptides not only have potential in the pharmaceutical industry but also in food and agricultural sectors. OBJECTIVE We provide an overview of the recent bacteriocins isolated from different species of Bacillus including their applications and the older bacteriocins. RESULTS In this review, we have revised some works about the improvements carried out in the production of bacteriocins. CONCLUSION These applications make bacteriocins very promising compounds that need to study for industrial production.
Collapse
Affiliation(s)
- Jessica Vaca
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| |
Collapse
|
15
|
Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, Li Z, He T, Xiao Y, Zhao J, Zhang Q. Isolation and Identification of Antibacterial Bioactive Compounds From Bacillus megaterium L2. Front Microbiol 2021; 12:645484. [PMID: 33841370 PMCID: PMC8024468 DOI: 10.3389/fmicb.2021.645484] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial metabolites exhibit a variety of biologically active compounds including antibacterial and antifungal activities. It is well known that Bacillus is considered to be a promising source of bioactive secondary metabolites. Most plant pathogens have an incredible ability to mutate and acquire resistance, causing major economic losses in the agricultural field. Therefore, it is necessary to use the natural antibacterial compounds in microbes to control plant pathogens. This study was conducted to investigate the bio-active compounds of Bacillus megaterium L2. According to the activity guidance of Agrobacterium tumefaciens T-37, Erwinia carotovora EC-1 and Ralstonia solanacearum RS-2, five monomeric compounds, including erucamide (1), behenic acid (2), palmitic acid (3), phenylacetic acid (4), and β-sitosterol (5), were fractionated and purified from the crude ethyl acetate extract of B. megaterium. To our knowledge, all compounds were isolated from the bacterium for the first time. To understand the antimicrobial activity of these compounds, and their minimum inhibitory concentrations (MICs) (range: 0.98∼500 μg/mL) were determined by the broth microdilution method. For the three tested pathogens, palmitic acid exhibited almost no antibacterial activity (>500 μg/mL), while erucamide had moderate antibacterial activity (MIC = 500 μg/mL). Behenic acid showed MICs of 250 μg/mL against T-37 and RS-2 strains with an antibacterial activity. β-sitosterol showed significant antimicrobial activity against RS-2. β-sitosterol showed remarkable antimicrobial activity against RS-2 with an MIC of 15.6 μg/mL. In addition, with the antimicrobial activity, against T-37 (62.5 μg/mL) and against EC-1 (125 μg/mL) and RS-2 (15.6 μg/mL) strains notably, phenylacetic acid may be interesting for the prevention and control of phytopathogenic bacteria. Our findings suggest that isolated compounds such as behenic acid, β-sitosterol, and phenylacetic acid may be promising candidates for natural antimicrobial agents.
Collapse
Affiliation(s)
- Yudan Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Qiuju Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yuyu Ji
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Ailin Xie
- College of Life Sciences, Guizhou University, Guiyang, China
| | - Long Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Jinyi Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Qinyu Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
16
|
Elliott CN, Becerra MC, Bennett JC, Graham L, Silvero C MJ, Hallett-Tapley GL. Facile synthesis of antibiotic-functionalized gold nanoparticles for colorimetric bacterial detection. RSC Adv 2021; 11:14161-14168. [PMID: 35423905 PMCID: PMC8697705 DOI: 10.1039/d1ra01316e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/03/2021] [Indexed: 11/21/2022] Open
Abstract
The development of quick and efficient methods for the detection of pathogenic bacteria is urgently needed for the diagnosis of infectious diseases and the control of microbiological contamination in global waterways, potable water sources and the food industry. This contribution will describe the synthesis of gold nanoparticles and their conjugation to broad spectrum, polypeptide and β-lactam antibiotics that function as both reducing agents and surface protectants (ATB@AuNP). Nanoparticle colloids examined using transmission electron microscopy are generally spherical in shape and range from 2-50 nm in size. Dynamic light scattering and infrared spectroscopy were also used to confirm encapsulation of the AuNP surface by antibiotic molecules. ATB@AuNP were then used to detect 3 common pathogenic bacterial species: Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The colour of the AuNP colloid was monitored visually and using UV-visible spectroscopy. A red shift of the UV visible absorbance and a visible colour change following introduction of each pathogen is indicative of ATB binding to the bacteria surface, ascribed to AuNP agglomeration. This work demonstrates that ATB@AuNP may be an efficient and high throughput tool for the rapid detection of common bacterial contaminants.
Collapse
Affiliation(s)
- Charlotte N Elliott
- Department of Chemistry, St. Francis Xavier University P.O. Box 5000, Antigonish Nova Scotia Canada
| | - María Cecilia Becerra
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Córdoba X5000 Argentina
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, CONICET Argentina
| | - J Craig Bennett
- Department of Physics, Acadia University P.O. Box 49, Wolfville Nova Scotia Canada
| | - Lori Graham
- Department of Biology, St. Francis Xavier University P.O. Box 5000, Antigonish Nova Scotia Canada
| | - M Jazmin Silvero C
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba Córdoba X5000 Argentina
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, CONICET Argentina
| | - Geniece L Hallett-Tapley
- Department of Chemistry, St. Francis Xavier University P.O. Box 5000, Antigonish Nova Scotia Canada
| |
Collapse
|
17
|
Flores DR, Casados LE, Velasco SF, Ramírez AC, Velázquez G. Comparative study of composition, antioxidant and antimicrobial activity of two adult edible insects from Tenebrionidae family. BMC Chem 2020; 14:55. [PMID: 32944716 PMCID: PMC7488255 DOI: 10.1186/s13065-020-00707-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023] Open
Abstract
In the case of Tenebrionidae family insects, studies focus on larval stage, leaving a lack of information regarding other stages. Therefore, this study was performed in order to understand the differences between the nutritional composition and the bioactivity of two species of this family in their adult stage, fed with a specific diet. Adult beetles of both species were defatted, lyophilized and protein extracted with buffer. Proximal and phytochemical analysis of the extracts of each insect were performed, along with protein extract and hydrolysis analysis by Tris-Tricine and Tris Glycine SDS PAGE. This analysis showed that T. molitor contained more protein and fat than U. dermestoides but contained less crude fiber. The protein extraction was made with PBS, where 130 and 45 kDa bands showed predominant for U. dermestoides, and less protein was present for T. molitor. Antioxidant and antimicrobial activities of the enzymatic protein hydrolysates and protein crude extracts were determined. Presence of protein associated with the antioxidant activity were found in both insects. Nonetheless U. dermestoides had a higher antioxidant activity with the protein extract in contrast with the higher antioxidant activity shown by U. dermestoides once the extracts were digested. After proteolysis, protein extracts showed an increasing antioxidant activity, plus, the ability to inhibit microbial growth of Proteus, Shigella and Bacillus. Insect protein hydrolysates with protease open the possibility for the use of these beetles as new sources of encrypted peptides for microbiological control once characterized.
Collapse
Affiliation(s)
- Daniel R. Flores
- Chemistry Department, University of Guadalajara, 1421 Marcelino García Barragán Blvd, 44430 Guadalajara, Jalisco Mexico
| | - Luz E. Casados
- Life and Science Division, Food Department, University of Guanajuato, Campus Irapuato-Salamanca, Km 9 carretera Irapuato-Silao ap 311, 36500 Irapuato, Guanajuato Mexico
| | - Sandra F. Velasco
- Chemistry Department, University of Guadalajara, 1421 Marcelino García Barragán Blvd, 44430 Guadalajara, Jalisco Mexico
| | - Ana C. Ramírez
- Chemistry Department, University of Guadalajara, 1421 Marcelino García Barragán Blvd, 44430 Guadalajara, Jalisco Mexico
| | - Gilberto Velázquez
- Chemistry Department, University of Guadalajara, 1421 Marcelino García Barragán Blvd, 44430 Guadalajara, Jalisco Mexico
| |
Collapse
|
18
|
Lemnaru (Popa) GM, Truşcă RD, Ilie CI, Țiplea RE, Ficai D, Oprea O, Stoica-Guzun A, Ficai A, Dițu LM. Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies. Molecules 2020; 25:molecules25184069. [PMID: 32899912 PMCID: PMC7571097 DOI: 10.3390/molecules25184069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
The use of bacterial cellulose (BC) in skin wound treatment is very attractive due to its unique characteristics. These dressings’ wet environment is an important feature that ensures efficient healing. In order to enhance the antimicrobial performances, bacterial-cellulose dressings were loaded with amoxicillin and bacitracin as antibacterial agents. Infrared characterization and thermal analysis confirmed bacterial-cellulose binding to the drug. Hydration capacity showed good hydrophilicity, an efficient dressing’s property. The results confirmed the drugs’ presence in the bacterial-cellulose dressing’s structure as well as the antimicrobial efficiency against Staphylococcus aureus and Escherichia coli. The antimicrobial assessments were evaluated by contacting these dressings with the above-mentioned bacterial strains and evaluating the growth inhibition of these microorganisms.
Collapse
Affiliation(s)
- Georgiana-Mădălina Lemnaru (Popa)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Roxana Doina Truşcă
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Cornelia-Ioana Ilie
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Roxana Elena Țiplea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Ovidiu Oprea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
- Correspondence: (O.O.); (A.F.)
| | - Anicuța Stoica-Guzun
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Anton Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Correspondence: (O.O.); (A.F.)
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania; or
| |
Collapse
|
19
|
Kuebutornye FKA, Abarike ED, Lu Y, Hlordzi V, Sakyi ME, Afriyie G, Wang Z, Li Y, Xie CX. Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:819-841. [PMID: 31953625 DOI: 10.1007/s10695-019-00754-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Diseases are natural components of the environment, and many have economic implications for aquaculture and fisheries. Aquaculture is a fast-growing industry with the aim to meet the high protein demand of the ever-increasing global population; however, the emergence of diseases is a major setback to the industry. Probiotics emerged as a better solution to curb the disease problem in aquaculture among many alternatives. Probiotic Bacillus has been proven to better combat a wide range of fish pathogens relative to other probiotics in aquaculture; therefore, understanding the various mechanisms used by Bacillus in combating diseases will help improve their mode of action hence yielding better results in their combat against pathogens in the aquaculture industry. Thus, an overview of the mechanisms (production of bacteriocins, suppression of virulence gene expression, competition for adhesion sites, production of lytic enzymes, production of antibiotics, immunostimulation, competition for nutrients and energy, and production of organic acids) used by Bacillus probiotics in mitigating fish pathogens ranging from Aeromonas, Vibrio, Streptococcus, Yersinia, Pseudomonas, Clostridium, Acinetobacter, Edwardsiella, Flavobacterium, white spot syndrome virus, and infectious hypodermal and hematopoietic necrosis virus proven to be mitigated by Bacillus have been provided.
Collapse
Affiliation(s)
- Felix K A Kuebutornye
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Emmanuel Delwin Abarike
- Department of Fisheries and Aquatic Resources Management, University for Development Studies, Tamale, Ghana
| | - Yishan Lu
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China.
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China.
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China.
| | - Vivian Hlordzi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Michael Essien Sakyi
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Gyamfua Afriyie
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhiwen Wang
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Yuan Li
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Cai Xia Xie
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| |
Collapse
|