1
|
Chiwambutsa SM, Ayeni O, Kapungu N, Kanji C, Thelingwani R, Chen WC, Mokone DH, O’Neil DS, Neugut AI, Jacobson JS, Ruff P, Cubasch H, Joffe M, Masimirembwa C. Effects of Genetic Polymorphisms of Drug Metabolizing Enzymes and co-Medications on Tamoxifen Metabolism in Black South African Women with Breast Cancer. Clin Pharmacol Ther 2023; 114:127-136. [PMID: 37042388 PMCID: PMC11016593 DOI: 10.1002/cpt.2904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/02/2023] [Indexed: 04/13/2023]
Abstract
Clinical outcomes of tamoxifen (TAM) treatment show wide interindividual variability. Comedications and genetic polymorphisms of enzymes involved in TAM metabolism contributes to this variability. Drug-drug and drug-gene interactions have seldom been studied in African Black populations. We evaluated the effects of commonly co-administered medicines on TAM pharmacokinetics in a cohort of 229 South African Black female patients with hormone-receptor positive breast cancer. We also investigated the pharmacokinetic effects of genetic polymorphism in enzymes involved in TAM metabolism, including the variants CYP2D6*17 and *29, which have been mainly reported in people of African descent. TAM and its major metabolites, N-desmethyltamoxifen (NDM), 4-OH-tamoxifen, and endoxifen (ENDO), were quantified in plasma using the liquid chromatography-mass spectrometry. The GenoPharm open array was used to genotype CYP2D6, CYP3A5, CYP3A4, CYP2B6, CYP2C9, and CYP2C19. Results showed that CYP2D6 diplotype and CYP2D6 phenotype significantly affected endoxifen concentration (P < 0.001 and P < 0.001). CYP2D6*17 and CYP2D6*29 significantly reduced the metabolism of NDM to ENDO. Antiretroviral therapy had a significant effect on NDM levels and the TAM/NDM and NDM/ENDO metabolic ratios but did not result in significant effects on ENDO levels. In conclusion, CYP2D6 polymorphisms affected endoxifen concentration and the variants CYP2D6*17 and CYP2D6*29 significantly contributed to low exposure levels of ENDO. This study also suggests a low risk of drug-drug interaction in patients with breast cancer on TAM.
Collapse
Affiliation(s)
- Shingirai M. Chiwambutsa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Oluwatosin Ayeni
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Radiation Oncology, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyasha Kapungu
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Comfort Kanji
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Roslyn Thelingwani
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Wenlong Carl Chen
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
| | - Dikeledi H. Mokone
- Department of Surgery, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Ga-Rankuwa, South Africa
| | - Daniel S. O’Neil
- Comprehensive Cancer Center and Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alfred I. Neugut
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Judith S. Jacobson
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Paul Ruff
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South Africa Medical Research Council Common Epithelial Cancers Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Oncology, University of the Witwatersrand, Johannesburg, South Africa
| | - Herbert Cubasch
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South Africa Medical Research Council Common Epithelial Cancers Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South Africa Medical Research Council Common Epithelial Cancers Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SAMRC/Wits Developmental Pathways to Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, Johannesburg, South Africa
| | - Collen Masimirembwa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Khobrani A, Alatawi Y, Bajnaid E, Alemam O, Osman A, Bin Attash L, Jaffal M, AlGhanmi M, Alharbi A, Alnuhait M. Adherence to Hormonal Therapy in Breast Cancer Patients in Saudi Arabia: A Single-Center Study. Cureus 2022; 14:e24780. [PMID: 35677000 PMCID: PMC9167632 DOI: 10.7759/cureus.24780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is one of the most common types of cancer in women. Approximately three-quarters of all breast cancer patients have estrogen and/or progesterone receptor positivity. As a result, the majority of patients receive hormonal treatment for between five and 10 years. Long-term use of hormonal therapy reduces the recurrence rate and the risk of death. In Saudi patients, adherence to hormonal therapy is not adequately assessed. The primary objective of this study is to determine the clinical outcomes associated with hormonal therapy adherence in breast cancer patients. This is a retrospective cohort study of patients who received adjuvant hormonal therapy for hormone-receptor-positive breast cancer. Patients were included if they had received at least two prescription refills following their breast cancer diagnosis. The primary outcome measure was mortality and disease progression in relation to hormonal therapy adherence. Progression of disease is defined as local recurrence or radiographic evidence of metastatic disease. The secondary outcome measure was the study population's adherence to hormonal therapy. The proportion of days covered during hormonal therapy was used to assess adherence (PDC). PDC was calculated as the number of days in the prescription period divided by the total number of days in the prescription period. Patients are considered adherent if their PDC value is greater than 0.8. The mortality and disease progression curves were generated using the Kaplan-Meier method. The proportion of patients adhering to hormonal therapy was determined using descriptive analysis. The IRB granted approval. A total of 121 patients were included in the study from the 380 patients screened. Tamoxifen, letrozole, and anastrozole were administered to 58%, 27%, and 14% of patients, respectively. The median age was 53 years. Women who were postmenopausal constituted 52.3% of the study population. The majority of patients were in Stages II and I (56.2% and 16.53%, respectively). The majority of the tumors were Grade II (58.68 %). Adherence was not associated with disease progression (HR, 0.66; 95% CI, 0.25-1.72) or mortality (HR, 1.391; 95 percent CI, 0.33-5.82). Disease progression and mortality were not found to be significantly associated with hormonal therapy adherence in this study. A larger study is required to confirm the findings of our study.
Collapse
|
3
|
Zhou W, Jiang Y, Xu Y, Wang Y, Ma X, Zhou L, Lin Y, Wang Y, Wu Z, Li M, Yin W, Lu J. Comparison of adverse drug reactions between tamoxifen and toremifene in breast cancer patients with different CYP2D6 genotypes: a propensity-score matched cohort study. Int J Cancer 2021; 150:1664-1676. [PMID: 34957551 DOI: 10.1002/ijc.33919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022]
Abstract
CYP2D6 gene polymorphism had a profound impact upon the effect of tamoxifen as adjuvant endocrine therapy in breast cancers. However, it had never been reported whether the adverse drug reactions vary by CYP2D6 metabolic status for patients treated with tamoxifen or toremifene. We conducted an retrospective study in breast cancer patients to investigate the impact of CYP2D6 metabolizers on liver dysfunction events, gynecological events, and dyslipidemia events. According to CYP2D6*10 (100C → T) genotype, the enrolled patients were further categorized into four cohorts (extensive metabolizers taking tamoxifen [EM + TAM], extensive metabolizers taking toremifene [EM + TOR], intermediate metabolizers taking tamoxifen [IM + TAM], intermediate metabolizers taking toremifene cohort [IM + TOR]). A total of 192 patients were included into the study, with a median follow-up time of 26.2 months. In EM + TAM cohort, the risks of liver dysfunction events (P = 0.004) and gynecological events (P = 0.004) were significantly higher compared with EM + TOR cohort. In IM + TAM cohort, the risks of liver dysfunction events (P = 0.14) and gynecological events (P = 0.99) were not significantly different from IM + TOR cohort. Significant decrease of total cholesterol was observed in EM + TAM cohort around 1 year after taking tamoxifen (P < 0.001). Significant interactions between CYP2D6 metabolic status and endocrine agents were observed in terms of liver dysfunction events (p-interaction = 0.007) and gynecological events (p-interaction = 0.026). These findings suggested that CYP2D6 gene polymorphism played a significant role in predicting liver dysfunction, gynecological diseases and lipid metabolism changes among patients taking tamoxifen or toremifene. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weihang Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwei Jiang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqian Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Ma
- Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziping Wu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Li
- Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Mulder TAM, de With M, del Re M, Danesi R, Mathijssen RHJ, van Schaik RHN. Clinical CYP2D6 Genotyping to Personalize Adjuvant Tamoxifen Treatment in ER-Positive Breast Cancer Patients: Current Status of a Controversy. Cancers (Basel) 2021; 13:cancers13040771. [PMID: 33673305 PMCID: PMC7917604 DOI: 10.3390/cancers13040771] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Tamoxifen is an important adjuvant endocrine therapy in estrogen receptor (ER)-positive breast cancer patients. It is mainly catalyzed by the enzyme CYP2D6 into the most active metabolite endoxifen. Genetic variation in the CYP2D6 gene influences endoxifen formation and thereby potentially therapy outcome. However, the association between CYP2D6 genotype and clinical outcome on tamoxifen is still under debate, as contradictory outcomes have been published. This review describes the latest insights in both CYP2D6 genotype and endoxifen concentrations, as well CYP2D6 genotype and clinical outcome, from 2018 to 2020. Abstract Tamoxifen is a major option for adjuvant endocrine treatment in estrogen receptor (ER) positive breast cancer patients. The conversion of the prodrug tamoxifen into the most active metabolite endoxifen is mainly catalyzed by the enzyme cytochrome P450 2D6 (CYP2D6). Genetic variation in the CYP2D6 gene leads to altered enzyme activity, which influences endoxifen formation and thereby potentially therapy outcome. The association between genetically compromised CYP2D6 activity and low endoxifen plasma concentrations is generally accepted, and it was shown that tamoxifen dose increments in compromised patients resulted in higher endoxifen concentrations. However, the correlation between CYP2D6 genotype and clinical outcome is still under debate. This has led to genotype-based tamoxifen dosing recommendations by the Clinical Pharmacogenetic Implementation Consortium (CPIC) in 2018, whereas in 2019, the European Society of Medical Oncology (ESMO) discouraged the use of CYP2D6 genotyping in clinical practice for tamoxifen therapy. This paper describes the latest developments on CYP2D6 genotyping in relation to endoxifen plasma concentrations and tamoxifen-related clinical outcome. Therefore, we focused on Pharmacogenetic publications from 2018 (CPIC publication) to 2021 in order to shed a light on the current status of this debate.
Collapse
Affiliation(s)
- Tessa A. M. Mulder
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
| | - Mirjam de With
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands;
| | - Marzia del Re
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Romano Danesi
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands;
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Correspondence: ; Tel.: +31-10-703-3119
| |
Collapse
|