1
|
Raimer Young HM, Hou PC, Bartosik AR, Atkin N, Wang L, Wang Z, Ratan A, Zang C, Wang YH. DNA fragility at topologically associated domain boundaries is promoted by alternative DNA secondary structure and topoisomerase II activity. Nucleic Acids Res 2024; 52:3837-3855. [PMID: 38452213 PMCID: PMC11040008 DOI: 10.1093/nar/gkae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.
Collapse
Affiliation(s)
- Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Pei-Chi Hou
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Anna R Bartosik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908-0717, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Liu Q, Jiang X, Tu W, Liu L, Huang Y, Xia Y, Xia X, Shi Y. Comparative efficiency of differential diagnostic methods for the identification of BRAF V600E gene mutation in papillary thyroid cancer (Review). Exp Ther Med 2024; 27:149. [PMID: 38476918 PMCID: PMC10928970 DOI: 10.3892/etm.2024.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) encodes a serine-threonine kinase. The V600E point mutation in the BRAF gene is the most common mutation, predominantly occurring in melanoma, and colorectal, thyroid and non-small cell lung cancer. Particularly in the context of thyroid cancer research, it is routinely employed as a molecular biomarker to assist in diagnosing and predicting the prognosis of papillary thyroid cancer (PTC), and to formulate targeted therapeutic strategies. Currently, several methods are utilized in clinical settings to detect BRAF V600E mutations in patients with PTC. However, the sensitivity and specificity of various detection techniques vary significantly, resulting in diverse detection outcomes. The present review highlights the advantages and disadvantages of the methods currently employed in medical practice, with the aim of guiding clinicians and researchers in selecting the most suitable detection approach for its high sensitivity, reproducibility and potential to develop targeted therapeutic regimens for patients with BRAF gene mutation-associated PTC.
Collapse
Affiliation(s)
- Qian Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xue Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Lina Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Ying Huang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yuxiao Xia
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xuliang Xia
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yuhong Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
3
|
Akhtar MS, Akhter N, Talat A, Alharbi RA, Sindi AA, Klufah F, Alyahyawi HE, Alruwetei A, Ahmad A, Zamzami MA, Deo SVS, Husain SA, Badi OA, Khan MJ. Association of mutation and expression of the brother of the regulator of imprinted sites (BORIS) gene with breast cancer progression. Oncotarget 2023; 14:528-541. [PMID: 37235839 PMCID: PMC10219660 DOI: 10.18632/oncotarget.28442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION The BORIS, 11 zinc-finger transcription factors, is a member of the cancer-testis antigen (CTA) family. It is mapped to chromosome number 20q13.2 and this region is genetically linked to the early onset of breast cancer. The current study analyzed the correlation between BORIS mutations and the expression of the protein in breast cancer cases. MATERIALS AND METHODS A population-based study including a total of 155 breast cancer tissue samples and an equal number of normal adjacent tissues from Indian female breast cancer patients was carried out. Mutations of the BORIS gene were detected by polymerase chain reaction-single standard confirmation polymorphisms (PCR-SSCP) and automated DNA sequencing and by immunohistochemistry for BORIS protein expression were performed. The observed findings were correlated with several clinicopathological parameters to find out the clinical relevance of associations. RESULTS Of all the cases 16.12% (25/155) showed mutations in the BORIS gene. The observed mutations present on codon 329 are missense, leading to Val> Ile (G>A) change on exon 5 of the BORIS gene. A significant association was observed between mutations of the BORIS gene and some clinicopathological features like nodal status (p = 0.013), estrogen receptor (ER) expression (p = 0.008), progesterone receptor (PR) expression (p = 0.039), clinical stage (p = 0.010) and menopausal status (p = 0.023). The protein expression analysis showed 20.64% (32/155) samples showing low or no expression (+), 34.19% (53/155) with moderate expression (++), and 45.17% (70/155) showing high expression (+++) of BORIS protein. A significant association was observed between the expression of BORIS protein and clinicopathological features like clinical stage (p = 0.013), nodal status (p = 0.049), ER expression (p = 0.039), and PR expression (p = 0.027). When mutation and protein expression were correlated in combination with clinicopathological parameters a significant association was observed in the category of high (+++) level of BORIS protein expression (p = 0.017). CONCLUSION The BORIS mutations and high protein expression occur frequently in carcinoma of the breast suggesting their association with the onset and progression of breast carcinoma. Further, the BORIS has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naseem Akhter
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Arshi Talat
- Department of Orthodontics and Dentofacial Orthopedics, ITS Dental College, Hospital and Research Centre, Greater Noida, Delhi-NCR, India
| | - Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmajeed A.A. Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Faisal Klufah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hanan E. Alyahyawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmohsen Alruwetei
- Department of Medical Laboratory, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - SVS Deo
- Department of Surgical Oncology, BRA- IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Osama A. Badi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
4
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
5
|
El Ghamrasni S, Quevedo R, Hawley J, Mazrooei P, Hanna Y, Cirlan I, Zhu H, Bruce JP, Oldfield LE, Yang SYC, Guilhamon P, Reimand J, Cescon DW, Done SJ, Lupien M, Pugh TJ. Mutations in Noncoding Cis-Regulatory Elements Reveal Cancer Driver Cistromes in Luminal Breast Cancer. Mol Cancer Res 2022; 20:102-113. [PMID: 34556523 PMCID: PMC9398156 DOI: 10.1158/1541-7786.mcr-21-0471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/31/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
Whole-genome sequencing of primary breast tumors enabled the identification of cancer driver genes and noncoding cancer driver plexuses from somatic mutations. However, differentiating driver from passenger events among noncoding genetic variants remains a challenge. Herein, we reveal cancer-driver cis-regulatory elements linked to transcription factors previously shown to be involved in development of luminal breast cancers by defining a tumor-enriched catalogue of approximately 100,000 unique cis-regulatory elements from 26 primary luminal estrogen receptor (ER)+ progesterone receptor (PR)+ breast tumors. Integrating this catalog with somatic mutations from 350 publicly available breast tumor whole genomes, we uncovered cancer driver cistromes, defined as the sum of binding sites for a transcription factor, for ten transcription factors in luminal breast cancer such as FOXA1 and ER, nine of which are essential for growth in breast cancer with four exclusive to the luminal subtype. Collectively, we present a strategy to find cancer driver cistromes relying on quantifying the enrichment of noncoding mutations over cis-regulatory elements concatenated into a functional unit. IMPLICATIONS: Mapping the accessible chromatin of luminal breast cancer led to discovery of an accumulation of mutations within cistromes of transcription factors essential to luminal breast cancer. This demonstrates coopting of regulatory networks to drive cancer and provides a framework to derive insight into the noncoding space of cancer.
Collapse
Affiliation(s)
- Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Genentech, South San Francisco, California
| | - Youstina Hanna
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Iulia Cirlan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Helen Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Leslie E Oldfield
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jüri Reimand
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Dave W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Susan J Done
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
6
|
de Castro CPM, Cadefau M, Cuartero S. The Mutational Landscape of Myeloid Leukaemia in Down Syndrome. Cancers (Basel) 2021; 13:4144. [PMID: 34439298 PMCID: PMC8394284 DOI: 10.3390/cancers13164144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators-such as cohesin, CTCF or EZH2-and in signalling mediators of the JAK/STAT and RAS pathways. Most of them are also found in non-DS myeloid malignancies, albeit at extremely different frequencies. Intriguingly, mutations in proteins involved in the three-dimensional organization of the genome are found in nearly 50% of cases. How the resulting mutant proteins cooperate with trisomy 21 and mutant GATA1 to promote ML-DS is not fully understood. In this review, we summarize and discuss current knowledge about the sequential acquisition of genomic alterations in ML-DS.
Collapse
Affiliation(s)
| | - Maria Cadefau
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
7
|
Aboelnour E, Bonev B. Decoding the organization, dynamics, and function of the 4D genome. Dev Cell 2021; 56:1562-1573. [PMID: 33984271 DOI: 10.1016/j.devcel.2021.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/15/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Understanding how complex cell-fate decisions emerge at the molecular level is a key challenge in developmental biology. Despite remarkable progress in decoding the contribution of the linear epigenome, how spatial genome architecture functionally informs changes in gene expression remains unclear. In this review, we discuss recent insights in elucidating the molecular landscape of genome folding, emphasizing the multilayered nature of the 3D genome, its importance for gene regulation, and its spatiotemporal dynamics. Finally, we discuss how these new concepts and emergent technologies will enable us to address some of the outstanding questions in development and disease.
Collapse
Affiliation(s)
- Erin Aboelnour
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
8
|
Sensitivity and applications of the PCR Single-Strand Conformation Polymorphism method. Mol Biol Rep 2021; 48:3629-3635. [PMID: 33893925 PMCID: PMC8065318 DOI: 10.1007/s11033-021-06349-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
PCR Single-Strand Conformation Polymorphism is a method used to identify and detect mutations and is now well known for its many applications on living beings. This paper will discuss the experimental details, limitations and sensitivity of the PCR Single-Strand Conformation Polymorphism method in relation to all existing literature available to us until today. Genomic DNA extraction, PCR amplification and Single-Strand Conformation Polymorphism conditions (concentration of polyacrylamide slab gel electrophoresis, dissociation treatment of double- stranded DNA) and comparison with PCR Restriction Fragment Length Polymorphism are presented. Since its discovery in 1989, there have been many variations, innovations, and modifications of the method, which makes it very easy, safe, fast and for this reason widely applied in clinical diagnostic, forensic medicine, biochemical, veterinary, microbiological, food and environmental laboratories. One of the possible applications of the method is the diagnosis and identification of mutations in new strains of coronaviruses, because science needs more tools to tackle the problem of this pandemic. The PCR Single-Strand Conformation Polymorphism method can be applied in many cases provided that control samples are available and the required conditions of the method are achieved.
Collapse
|