1
|
Fu X, Zhou J, Zhao J, Yang R, Zhou A, Fang Z, Wu H. Rapid Identification of Chemical Compounds in Danzhi Jiangtang Capsule Using Ultra-Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Combined With Multiple Data Processing Techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5140. [PMID: 40285534 DOI: 10.1002/jms.5140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Danzhi Jiangtang capsule (DJC) is a traditional Chinese medicine prescription that has been clinically used to treat Type 2 diabetes mellitus and its complications. However, research on the chemical compounds present in DJC remains limited. In this study, an analytical strategy based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was developed for the rapid and systematic characterization of chemical compounds in DJC. Firstly, a DJC self-built database was established, and UPLC-Q-TOF/MS was applied for comprehensive profiling of DJC's chemical compounds. Then, R language combined with MZmine was used for data preprocessing to construct the ion information list and extract effective data. Finally, the compounds were identified by multiple data processing techniques (multiple-point screening mass defect filtering [MDF], extracted ion chromatogram [EIC], neutral loss filter [NLF], diagnostic fragment ion filtering [DFIF], and direct identification method [including retention time, fragment behavior and reference substances]). Eventually, 137 compounds were characterized from DJC, including 19 monoterpenoids, 26 triterpenoids, 8 flavonoids, 12 iridoids, 7 phenylethanoid glycosides, 8 acetophenones, 23 organic acids, 2 violet ketones, 13 cyclic peptides, 8 alkaloids, 2 fatty acids, and 9 other compounds. Among these, 16 compounds were verified using reference substances. The study indicated that the analytical strategy established in this study effectively supports the in-depth study of DJC's chemical constituents and provides essential data for subsequent in vivo studies.
Collapse
Affiliation(s)
- Xiaojie Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Junting Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Rui Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province key Laboratory of Chinese Medicinal Formula, Hefei, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Lei Z, Luan F, Zou J, Zhang X, Zhai B, Xin B, Sun J, Guo D, Wang J, Shi Y. Traditional uses, phytochemical constituents, pharmacological properties, and quality control of Pseudostellaria heterophylla (Miq.) Pax. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118871. [PMID: 39368760 DOI: 10.1016/j.jep.2024.118871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Pseudostellaria heterophylla (Miq.) Pax belongs to the Caryophyllaceae family, which is widely used in traditional Chinese medicine in Asia. P. heterophylla was first documented in the classical text Bencao Congxin, also known as "Haier Shen". As a renowned folk medicine with a long history of medicinal application in China, this plant is frequently employed to address spleen deficiency and fatigue, loss of appetite, and weakness after illness. In recent years, P. heterophylla has gained significant global attention as an important medicinal plant, attributable to its pharmacological activities on the immune and endocrine systems, as well as its diverse applications. AIM OF THE WORK This review aims to deliver a comprehensive and analytical overview of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology, and quality control of P. heterophylla, while also offering novel insights and opportunities for future research. MATERIALS AND METHODS Relevant information regarding P. heterophylla was gathered from various databases, including Web of Science, PubMed, ACS Publications, Google Scholar, Baidu Scholar, and CNKI, in addition to The Catalogue of Life, the Flora of China database, and The World Flora Online. All published articles in multiple languages have been included and properly cited. The chemical structure of the compound was illustrated utilizing ChemDraw 19.0 software. RESULTS P. heterophylla has been traditionally employed to address a range of ailments, including cancer, cardiovascular diseases, diabetes, and respiratory disorders. More than 289 active constituents have been identified in P. heterophylla, comprising cyclic peptides, polysaccharides, saponins, alkaloids, flavonoids, nucleosides, and amino acids. Pharmacological investigations have demonstrated that P. heterophylla and its active constituents exhibit a broad spectrum of biological activities, including anti-cancer, immunomodulatory, antioxidant, hypoglycemic, anti-inflammatory effects, modulation of intestinal flora, enhancement of cognitive function, and inhibition of tyrosine kinase activity. Furthermore, it is extensively utilized in the functional food and cosmetics industries. CONCLUSION As a dual-purpose resource for both food and medicine, P. heterophylla possesses significant health care functions and considerable edible and medicinal value, with promising prospects for future development and utilization. However, numerous investigations into the biological activities of P. heterophylla are primarily focused on its extracts and bioactive constituents, and the mechanisms underlying the actions of these extracts and components remain unclear, with a dearth of studies on clinical efficacy and safety. Consequently, further detailed in vitro and in vivo studies investigating the mechanisms of action of pure active compounds of P. heterophylla are warranted, along with additional clinical investigations to ascertain the safety and efficacy of the plant for human use.
Collapse
Affiliation(s)
- Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jingyuan Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
3
|
Xu G, You Z, Zheng Y, Feng Q, Luo S, Xu L, Bao S, Wang Q. Integrated microbiome and metabolome analysis reveals that new insight into Radix pseudostellariae polysaccharide enhances PRRSV inactivated vaccine. Front Immunol 2024; 15:1352018. [PMID: 38989282 PMCID: PMC11233517 DOI: 10.3389/fimmu.2024.1352018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
In this study, we investigated how Radix pseudostellariae polysaccharide (RPP) enhances the immune response of the inactivated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine through interactions with the microbiome and metabolome. We pretreated sows with 10 mg/kg body weight of RPP via drinking water for 7 days prior to intramuscular injection of the PRRSV vaccine. This significantly increased the concentrations of PRRSV GP5 protein antibody, interleukin (IL)-2, IL-4, IL-10, and interferon (IFN)-γ. Oral administration of RPP also significantly improved the abundance of beneficial bacteria in the stool, such as Parabacteroides distasonis, Prevotella_copri, Eubacterium_sp., and Clostridium_sp._CAG:226, and decreased the levels of potentially pathogenic bacteria, such as Paraeggerthella and [Clostridium] innocuum, compared to the vaccine alone. These bacterial changes were confirmed using quantitative real-time polymerase chain reaction (Q-PCR). Moreover, RPP treatment significantly increased the blood concentrations of L-theanine, taurodeoxycholic acid (TDCA), and N-arachidonoyl proline, and decreased the levels of L-glutamine, oclacitinib, lipoxin C4, and leukotriene C5 in sows after immunization (p< 0.05). The concentrations of various blood metabolites were validated using sandwich enzyme-linked immunosorbent assay (ELISA), confirming the accuracy of the metabolomics data. Intriguingly, the integration of microbiome and metabolome analyses highlighted the significance of Prevotella_copri and TDCA. We consequently developed a mouse immunity model using GP5 protein and discovered that oral administration of RPP significantly enhanced the levels of GP5 protein antibodies, IL-2, IL-4, IL-10, and IFN-γ in mouse serum. It also increased the number of CD3+ and CD3+CD4+ cells in the spleen. Additionally, Prevotella_copri was administered into the large intestine via the anus for 7 days prior to the intramuscular injection of the PRRSV GP5 protein. The results demonstrated a significant increase in TDCA and GP5 antibody concentration in the mouse serum, indicating that RPP modulates Prevotella_copri to elevate its metabolite TDCA, thereby enhancing the GP5 antibody level. In conclusion, oral administration of 10 mg/kg RPP optimizes gut flora diversity and blood metabolites, particularly Prevotella_copri and TDCA, thereby improving the immune response to the inactivated PRRSV vaccine.
Collapse
Affiliation(s)
- Gaolin Xu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zelong You
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zheng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qixian Feng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shishi Luo
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Xu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songying Bao
- Technical Department, Zhaofenghua Biotechnology (Fuzhou) Co. Ltd, Fuzhou, China
| | - Quanxi Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Fang Z, Bi Z, Zhao J, Wang S, Wu D, Lu R, Lin Y. The effects of Danzhi Jiangtang capsule on clinical indices and vascular endothelial function in patients with impaired glucose tolerance of Qi-Yin deficiency type. Ann Med 2023; 55:2291185. [PMID: 38146741 PMCID: PMC10763911 DOI: 10.1080/07853890.2023.2291185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE To observe the effect of Danzhi Jiangtang capsule (DJC) on the clinical indexes and vascular endothelial function indexes in patients with impaired glucose tolerance (IGT). METHODS A total of 106 patients were enrolled and randomly assigned to the treatment group and control group following a four-week washout period. The patients in the control group received a general lifestyle intervention, while those in the treatment group received DJC (2.0 g 3× a day) in conjunction with the intervention given to the control group patients. The physiological and biochemical levels, vascular endothelial function indices, and traditional Chinese medicine (TCM) syndrome ratings of the patients in the two groups were compared after 12 weeks of therapy. RESULTS In the control group, the diastolic blood pressure (DBP) was significantly improved compared with those before treatment (83.31 ± 6.47 vs. 79.21 ± 6.17, p < .01) (CI: 1.45, 6.73; Cohen's d: 10.51), as was the case with the nitric oxide (NO) levels and TCM syndrome points (35.71 ± 4.58 vs. 43.96 ± 5.17, 9.57 ± 2.63 vs. 5.38 ± 1.79, p < .001) (CI: -10.28, -6.24; 3.12, 5.18; Cohen's d: 0.90). In the treatment group, the levels of fasting blood glucose, endothelin and vascular endothelial growth factor were significantly improved compared with control group (4.92 ± 0.21 vs. 5.59 ± 0.31, 59.37 ± 13.25 vs. 72.13 ± 12.37, 19.25 ± 2.80 vs. 26.76 ± 1.88, p < .001) (CI: 0.55, 0.78; 7.40, 18.13; 6.52, 8.50; Cohen's d: 4.94, 0.41, 1.32), as was the case with 2-h post-load plasma glucose and total cholesterol (TC) (8.33 ± 0.62 vs. 8.89 ± 1.55, 4.61 ± 1.05 vs. 5.22 ± 1.12, p < .05) (CI: 0.07, 1.07; 0.15, 1.06; Cohen's d: 0.40, 0.51). CONCLUSIONS Treatment with DJC could significantly improve the physiological and biochemical indicators, vascular endothelial function, and TCM syndrome points of IGT patients, indicating that DJC could be a potential drug to treat patients with IGT of Qi-Yin deficiency type.
Collapse
Affiliation(s)
- Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zheng Bi
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Sihai Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Di Wu
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ruimin Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yixuan Lin
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Shen J, San W, Zheng Y, Zhang S, Cao D, Chen Y, Meng G. Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother 2023; 168:115802. [PMID: 37918258 DOI: 10.1016/j.biopha.2023.115802] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease caused by disorders of insulin secretion and utilization. Long-term hyperglycemia, insulin resistance, and disorders of glucose and lipid metabolism cause vascular endothelial cell damage. Endothelial dysfunction is a key feature of diabetic vascular complications such as diabetic nephropathy, retinopathy, neuropathy, and atherosclerosis. Importantly, cell death is thought to be a key factor contributing to vascular endothelial injury. Morphologically, cell death can be divided into three forms: type I apoptosis, type II autophagy, and type III necrosis. According to the difference in function, cell death can be divided into accidental cell death (ACD) and regulated cell death (RCD). RCD is a controlled process involving numerous proteins and precise signaling cascades. Multiple subroutines covered by RCD may be involved in diabetic endothelial dysfunction, including apoptosis, autophagy, necroptosis, pyroptosis, entosis, ferroptosis, ferroautophagy, parthanatos, netotic cell death, lysosome-dependent cell death, alkaliptosis, oxeiptosis, cuproptosis, and PANoptosis. This article briefly reviews the mechanism and significance of cell death associated with diabetic endothelial dysfunction, which will help deepen the understanding of diabetic endothelial cell death and provide new therapeutic ideas.
Collapse
Affiliation(s)
- Jieru Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Danyi Cao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
6
|
Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol 2023; 11:1233259. [PMID: 37635867 PMCID: PMC10450957 DOI: 10.3389/fcell.2023.1233259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most important microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. The Janus kinase/signal transducer and activator of the transcription (JAK/STAT) signaling pathway, which is out of balance in the context of DKD, acts through a range of metabolism-related cytokines and hormones. JAK/STAT is the primary signaling node in the progression of DKD. The latest research on JAK/STAT signaling helps determine the role of this pathway in the factors associated with DKD progression. These factors include the renin-angiotensin system (RAS), fibrosis, immunity, inflammation, aging, autophagy, and EMT. This review epitomizes the progress in understanding the complicated explanation of the etiologies of DKD and the role of the JAK/STAT pathway in the progression of DKD and discusses whether it can be a potential target for treating DKD. It further summarizes the JAK/STAT inhibitors, natural products, and other drugs that are promising for treating DKD and discusses how these inhibitors can alleviate DKD to explore possible potential drugs that will contribute to formulating effective treatment strategies for DKD in the near future.
Collapse
Affiliation(s)
- Yingjun Liu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenkuan Wang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jintao Zhang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Gao
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghui Yin
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Efficacy of the Nourishing Yin and Clearing Heat Therapy Based on Traditional Chinese Medicine in the Prevention and Treatment of Radiotherapy-Induced Oral Mucositis in Nasopharyngeal Carcinomas: A Systematic Review and Meta-Analysis of Thirty Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4436361. [PMID: 35529930 PMCID: PMC9068295 DOI: 10.1155/2022/4436361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to evaluate the efficacy of nourishing Yin and clearing heat therapy (NYCH therapy) based on traditional Chinese medicine (TCM) in the treatment of radiotherapy-induced oral mucositis (RTOM) in nasopharyngeal carcinomas (NPCs). A total of eight online databases were searched from inception to September 2021 for randomized controlled trials (RCTs). The control group was treated with Western medicine (WM) alone, whereas the experimental group was treated with a combined NYCH and WM therapy. A total of 30 RCTs involving 2562 participants were ultimately included. NYCH therapy combined with conventional WM delayed the onset time (days) of RTOM (MD = 10.80, p < 0.001), and at that time, a higher cumulative radiotherapy dose (Gy) (MD = 5.72, p < 0.001) was completed in the experimental group. The combination regimen also reduced the incidence of severe oral mucositis (Grade III–IV) (RR = 0.25, p < 0.001). In addition, the treatment efficacy of the experimental group was significantly better than that of the control group (RR = 1.31, p < 0.001). Compared with the patients in the control group, the experimental group had lower xerostomia scores (MD = -1.07, p < 0.001) and more saliva (MD = 0.36, p < 0.001). NYCH combined with WM improved the efficacy of treating RTOM in NPC. This study provides a sufficient basis for conducting further large RCTs to prove the efficacy of NYCH.
Collapse
|
8
|
YIN G, SHEN G, DAI T, LI J. Danzhi Jiangtang capsule regulates the metabolism of blood lipids in hyperlipidemic rats through JAK2/STAT3 pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.77621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gang YIN
- Anhui University of Chinese Medicine, China
| | | | | | - Jingya LI
- Anhui University of Chinese Medicine, China
| |
Collapse
|