1
|
da Costa Ribeiro A, T. Tominaga T, Moretti Bonadio TG, P. da Silveira N, C. Leite D. A Study on the Behavior of Smart Starch- co-poly( N-isopropylacrylamide) Hybrid Microgels for Encapsulation of Methylene Blue. ACS OMEGA 2024; 9:27349-27357. [PMID: 38947796 PMCID: PMC11209679 DOI: 10.1021/acsomega.4c01947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
Hybrid microgels made from starch nanoparticles (SNPs) and poly(N-isopropylacrylamide) p(NIPAM) were used as promising hosts for the methylene blue (MB) dye. In this paper, these thermoresponsive microgels were characterized by dynamic light scattering (DLS), zeta potential measurements (ZP), and scanning electron microscopy (SEM) and evaluated as carriers for skin-targeted drug delivery. The hybrid microgel-MB systems in PBS solution were also studied by UV-vis spectroscopy and DLS, revealing discernible differences in spectral intensity and absorption shifts compared to microgels devoid of MB. This underscores the successful integration of methylene blue within the SNPs-co-p(NIPAM) microgels, signifying their potential as efficacious drug delivery vehicles.
Collapse
Affiliation(s)
- Andresa da Costa Ribeiro
- Applied
Physics in Materials Group, Departamento de Física, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | - Tania T. Tominaga
- Applied
Physics in Materials Group, Departamento de Física, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | - Taiana G. Moretti Bonadio
- Applied
Physics in Materials Group, Departamento de Física, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | - Nádya P. da Silveira
- Post
Graduation Program in Chemistry (PPGQ), Chemistry Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Daiani C. Leite
- Laboratório
de Superfícies e Macromoléculas (SM Lab), Departamento
de Física, Universidade Federal de
Santa Maria, Santa
Maria, RS 97105-900, Brazil
| |
Collapse
|
2
|
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers (Basel) 2023; 15:polym15051167. [PMID: 36904409 PMCID: PMC10007494 DOI: 10.3390/polym15051167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Starch as a natural polymer is abundant and widely used in various industries around the world. In general, the preparation methods for starch nanoparticles (SNPs) can be classified into 'top-down' and 'bottom-up' methods. SNPs can be produced in smaller sizes and used to improve the functional properties of starch. Thus, they are considered for the various opportunities to improve the quality of product development with starch. This literature study presents information and reviews regarding SNPs, their general preparation methods, characteristics of the resulting SNPs and their applications, especially in food systems, such as Pickering emulsion, bioplastic filler, antimicrobial agent, fat replacer and encapsulating agent. The aspects related to the properties of SNPs and information on the extent of their utilisation are reviewed in this study. The findings can be utilised and encouraged by other researchers to develop and expand the applications of SNPs.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Dina Intan Rizki
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Agroindustrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute (SERI), Universitas Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yana Cahyana
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
3
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Devi S, Kumar S, Verma V, Kaushik D, Verma R, Bhatia M. Enhancement of ketoprofen dissolution rate by the liquisolid technique: optimization and in vitro and in vivo investigations. Drug Deliv Transl Res 2022; 12:2693-2707. [PMID: 35178670 DOI: 10.1007/s13346-022-01120-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 12/15/2022]
Abstract
The objective of the current study is to evaluate the prospective of liquisolid formulation to improve the dissolution rate of ketoprofen and thereby the bioavailability. Different batches of liquisolid were prepared using polyethylene glycol 200 as a solvent, microcrystalline cellulose, and aerosil 200 as carrier and coating material, respectively. Central composite design (32) was utilized to examine the effects of independent variables (load factor and excipient ratio) on dependent variables (solubility and % in vitro drug release). Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy techniques were employed for characterization of optimized batch (LS-10) of liquisolid formulation. The half-maximal inhibitory concentration (IC50) values for in vitro anti-inflammatory activity for liquisolid formulation exhibited a higher anti-inflammatory effect than ketoprofen and physical mixture. The statistical analysis of in vivo (anti-inflammatory and analgesic) activities data demonstrated that the test (optimized formulation) treatment group resulted in quick pharmacological response in Wistar rats and Albino mice when compared with standard (pure drug) and control treatment groups. The results obtained in the present study illustrated that the liquisolid formulation could be a propitious approach to increase the bioavailability of ketoprofen and could be used in oral therapy.
Collapse
Affiliation(s)
- Sunita Devi
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences (SoMAS), G. D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India.
| |
Collapse
|
5
|
Sivamaruthi BS, Nallasamy PK, Suganthy N, Kesika P, Chaiyasut C. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Samra MM, Hafeez H, Azam M, Imran M, Basra MAR. Bi(III) complexes of piroxicam and meloxicam: Synthesis, characterization, antioxidant, anti-inflammatory and DNA cleavage studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Samra MM, Hafeez H, Sadia A, Imran M, Basra MAR. Synthesis, characterization, docking and biological studies of M(II) (M= Mg, Ca, Sr) Piroxicam complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Allawadhi P, Singh V, Govindaraj K, Khurana I, Sarode LP, Navik U, Banothu AK, Weiskirchen R, Bharani KK, Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022; 281:118923. [PMID: 35074100 DOI: 10.1016/j.carbpol.2021.118923] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
Polysaccharides are biopolymers distinguished by their complex secondary structures executing various roles in microorganisms, plants, and animals. They are made up of long monomers of similar type or as a combination of other monomeric chains. Polysaccharides are considered superior as compared to other polymers due to their diversity in charge and size, biodegradability, abundance, bio-compatibility, and less toxicity. These natural polymers are widely used in designing of nanoparticles (NPs) which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. The side chain reactive groups of polysaccharides are advantageous for functionalization with nanoparticle-based conjugates or therapeutic agents such as small molecules, proteins, peptides and nucleic acids. Polysaccharide NPs show excellent pharmacokinetic and drug delivery properties, facilitate improved oral absorption, control the release of drugs, increases in vivo retention capability, targeted delivery, and exert synergistic effects. This review updates the usage of polysaccharides based NPs particularly cellulose, chitosan, hyaluronic acid, alginate, dextran, starch, cyclodextrins, pullulan, and their combinations with promising applications in diabetes, organ fibrosis and arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kannan Govindaraj
- Department of Developmental BioEngineering, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
9
|
Devi S, Kumar A, Kapoor A, Verma V, Yadav S, Bhatia M. Ketoprofen-FA Co-crystal: In Vitro and In Vivo Investigation for the Solubility Enhancement of Drug by Design of Expert. AAPS PharmSciTech 2022; 23:101. [PMID: 35348937 DOI: 10.1208/s12249-022-02253-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
The present piece of research work is framed for improving the solubility of ketoprofen by forming co-crystal using fumaric acid as a coformer. Co-crystal of ketoprofen and fumaric acid was prepared by simple solvent-assisted grinding method, containing drug and coformer as independent variables and solubility and % drug release were assumed to be dependent variables. Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance and scanning electron microscopy techniques were used to characterize the preparation of optimized batch of co-crystal and further, evaluated for in vitro and in vivo anti-inflammatory and analgesic activities. Based on results of solubility and dissolution rate studies the formulation showed magnified improvement in both the properties on co-crystallization. The values of Gibbs free energy are negative at all levels of carrier demonstrating spontaneity of the drug solubilization process. The IC50 value of optimized batch of co-crystal formulation and the pure drug was observed as 327.33 μg/ml and 556.11 μg/ml, respectively, demonstrating that co-crystal formulation possesses more percentage protection against protein denaturation than the drug ketoprofen. In vivo (anti-inflammatory and analgesic) activities revealed that optimized batch of co-crystal formulation delivered a rapid pharmacological response in Wistar rats and albino mice when compared with standard drug.
Collapse
|
10
|
Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chem 2022; 369:130895. [PMID: 34438343 DOI: 10.1016/j.foodchem.2021.130895] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
Quinoa starch nanoparticles (QSNPs) prepared by nanoprecipitation method under the optimal condition was developed as a carrier for quercetin. The QSNPs prepared under the optimal condition (90 DMSO/H2O ratio, 10 ethanol/solvent ratio, and ultrasonic oscillation dispersion mode) had the smallest particle size and polymer dispersity index through full factorial design. Compared with maize starch nanoparticles (MSNPs), QSNPs exhibited a smaller particle size of 166.25 nm and a higher loading capacity of 26.62%. Starch nanoparticles (SNPs) interacted with quercetin through hydrogen bonding. V-type crystal structures of SNPs were disappeared and their crystallinity increased after loading with quercetin. QSNPs was more effective in protecting and prolonging quercetin bioactivity because of their small particle sizes and high loading capacities. This study will be useful for preparing starch-based carrier used to load sensitive bioactive compounds.
Collapse
|
11
|
Torres FG, De-la-Torre GE. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int J Biol Macromol 2022; 194:289-305. [PMID: 34863968 DOI: 10.1016/j.ijbiomac.2021.11.187] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, starch nanoparticles (SNPs) are drawing attention to the scientific community due to their versatility and wide range of applications. Although several works have extensively addressed the SNP production routes, not much is discussed about the SNPs modification techniques, as well as the use of modified SNPs in typical and unconventional applications. Here, we focused on the SNP modification strategies and characteristics and performance of the resulting products, as well as their practical applications, while pointing out the main limitations and recommendations. We aim to guide researchers by identifying the next steps in this emerging line of research. SNPs esterification and oxidation are preferred chemical modifications, which result in changes in the functional groups. Moreover, additional polymers are incorporated into the SNP surface through copolymer grafting. Physical modification of starch has demonstrated similar changes in the functional groups without the need for toxic chemicals. Modified SNPs rendered differentiated properties, such as size, shape, crystallinity, hydrophobicity, and Zeta-potential. For multiple applications, tailoring the aforementioned properties is key to the performance of nanoparticle-based systems. However, the number of studies focusing on emerging applications is fairly limited, while their applications as drug delivery systems lack in vivo studies. The main challenges and prospects were discussed.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru.
| | | |
Collapse
|
12
|
Alves MJDS, Chacon WDC, Gagliardi TR, Agudelo Henao AC, Monteiro AR, Ayala Valencia G. Food Applications of Starch Nanomaterials: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maria Jaízia dos Santos Alves
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Wilson Daniel Caicedo Chacon
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Talita Ribeiro Gagliardi
- Department of Cell Biology, Embryology and Genetics Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Ana C. Agudelo Henao
- Facultad de Ingeniería y Administración Universidad Nacional de Colombia sede Palmira Palmira AA 237 Colombia
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis Santa Catarina 88040‐900 Brazil
| |
Collapse
|
13
|
Jain AK, Upadhyay R, Mishra K, Jain SK. Gastroretentive Metformin loaded Nanoparticles for the effective management of Type-2 Diabetes Mellitus. Curr Drug Deliv 2021; 19:93-103. [PMID: 34126895 DOI: 10.2174/1567201818666210614095159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metformin, an anti-diabetic drug, has low bioavailability and a short biological half-life. Thus, bioavailability enhancement and prolonged release of the drug are highly desirable. In this regard, we aimed to developed gastroretentive nanoparticles made of jackfruit seed starch (JFSS) loaded with metformin. METHODS The developed nanoparticles were optimized for various process variables and were further characterized. Nanoparticles exhibited good results with respect to particle size (244.3 to 612.4 nm), particle size distribution, shape, and drug entrapment efficiency (75.8 to 89.2 %) with sustained drug release for 24 h and a high buoyancy (89% for F7, formulation made of the highest concentration of Jackfruit seed starch prepared at 1000 RPM stirring speed). RESULTS The hypoglycemic potential of these nanoparticles was tested in the nicotinamide streptozocin induced diabetic model; there was a significant reduction in blood glucose level (50 % reduction from 4 - 8 h, p < 0.01) for a prolonged period of time (up to 24 h) in comparison to diabetic control and plain metformin solution. CONCLUSION The outcome of the study suggested that the developed formulations are suitable for gastro-retentive delivery of Metformin in a controlled manner appropriate for a single administration per day.
Collapse
Affiliation(s)
- Akhlesh K Jain
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Richa Upadhyay
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Keerti Mishra
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Sunil K Jain
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| |
Collapse
|
14
|
Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, starch nanoparticles (SNPs) have attracted growing attention due to their unique properties as a sustainable alternative to common nanomaterials since they are natural, renewable and biodegradable. SNPs can be obtained by the breakdown of starch granules through different techniques which include both physical and chemical methods. The final properties of the SNPs are strongly influenced by the synthesis method used as well as the operational conditions, where a controlled and monodispersed size is crucial for certain bioapplications. SNPs are considered to be a good vehicle to improve the controlled release of many bioactive compounds in different research fields due to their high biocompatibility, potential functionalization, and high surface/volume ratio. Their applications are frequently found in medicine, cosmetics, biotechnology, or the food industry, among others. Both the encapsulation properties as well as the releasing processes of the bioactive compounds are highly influenced by the size of the SNPs. In this review, a general description of the different types of SNPs (whole and hollow) synthesis methods is provided as well as on different techniques for encapsulating bioactive compounds, including direct and indirect methods, with application in several fields. Starches from different botanical sources and different bioactive compounds are compared with respect to the efficacy in vitro and in vivo. Applications and future research trends on SNPs synthesis have been included and discussed.
Collapse
|
15
|
Otarola J, Molina PG, Garrido M, Correa NM. Spectroscopic characterization and general features of piroxicam encapsulated in nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|