Wang HW, Finlay JC, Lee K, Zhu TC, Putt ME, Glatstein E, Koch CJ, Evans SM, Hahn SM, Busch TM, Yodh AG. Quantitative comparison of tissue oxygen and motexafin lutetium uptake by ex vivo and noninvasive in vivo techniques in patients with intraperitoneal carcinomatosis.
JOURNAL OF BIOMEDICAL OPTICS 2007;
12:034023. [PMID:
17614731 DOI:
10.1117/1.2743082]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Near-infrared diffuse reflectance spectroscopy (DRS) has been used to noninvasively monitor optical properties during photodynamic therapy (PDT). This technique has been extensively validated in tissue phantoms; however, validation in patients has been limited. This pilot study compares blood oxygenation and photosensitizer tissue uptake measured by multiwavelength DRS with ex vivo assays of the hypoxia marker, 2-(2-nitroimida-zol-1[H]-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5), and the photosensitizer (motexafin lutetium, MLu) from tissues at the same tumor site of three tumors in two patients with intra-abdominal cancers. Similar in vivo and ex vivo measurements of MLu concentration are carried out in murine radiation-induced fibrosarcoma (RIF) tumors (n=9). The selection of optimal DRS wavelength range and source-detector separations is discussed and implemented, and the association between in vivo and ex vivo measurements is examined. The results demonstrate a negative correlation between blood oxygen saturation (StO(2)) and EF5 binding, consistent with published relationships between EF5 binding and electrode measured pO(2), and between electrode measured pO(2) and StO(2). A tight correspondence is observed between in vivo DRS and ex vivo measured MLu concentration in the RIF tumors; similar data are positively correlated in the human intraperitoneal tumors. These results further demonstrate the potential of in vivo DRS measurements in clinical PDT.
Collapse