1
|
Yuan J, Xu B, Su Y, Zhang P, Zhang X, Gong P. Identification of USP39 as a prognostic and predictive biomarker for determining the response to immunotherapy in pancreatic cancer. BMC Cancer 2025; 25:758. [PMID: 40264098 PMCID: PMC12016207 DOI: 10.1186/s12885-025-14096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Ubiquitin-Specific Protease 39 (USP39) has been implicated in numerous malignancies, however, its pathogenic mechanisms and impact on the tumor immune microenvironment (TIME) remain incompletely characterized. Based on The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases, we investigated the diagnostic and prognostic values of USP39 across various cancer types. Additionally, we examined the correlation between USP39 expression and immune-related gene signature, immune cell infiltration pattern, tumor microsatellite instability (MSI), and tumor mutation burden (TMB). This study specifically focused on exploring the clinical relevance and molecular functions of USP39 in pancreatic adenocarcinoma (PAAD), with particularly emphasis on its role in shaping the TIME and modulating responses to immunotherapy. The results demonstrated that evaluated USP39 expression significantly correlated with advanced tumor stage and unfavorable clinical outcomes across multiple cancer types, most notably in PAAD. Functional enrichment analysis indicated that USP39 potentially promotes tumor progression through multiple oncogenic signaling cascades. In vitro experimental validation confirmed that USP39 knockdown inhibited migration and proliferation of pancreatic cancer cells while inducing apoptosis. Additionally, we identified significant positive correlations between USP39 expression and immune checkpoint molecules, particularly prominent in PAAD. Furthermore, we observed associations between USP39 expression and TMB in 16 cancer types and MSI in 11 cancer types, suggesting that heightened USP39 expression may enhance responsiveness to immunotherapeutic interventions. Collectively, our findings establish USP39 as a valuable immune-related biomarker with both diagnostic and prognostic utility across multiple cancer types, especially PAAD, underscoring its potential as a promising therapeutic target for cancer immunotherapy. Clinical trial number Not applicable.
Collapse
Affiliation(s)
- Jiahui Yuan
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Beibei Xu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Pingping Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xianbin Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Conversion of a Non-Cancer-Selective Promoter into a Cancer-Selective Promoter. Cancers (Basel) 2022; 14:cancers14061497. [PMID: 35326649 PMCID: PMC8946048 DOI: 10.3390/cancers14061497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The rat progression elevated gene-3 (PEG-3) promoter displays cancer-selective expression, whereas the rat growth arrest and DNA damage inducible gene-34 (GADD34) promoter lacks cancer specificity. PEG-3 and GADD34 minimal promoters display strong sequence homology except for two single point mutations. Since mutations are prevalent in many gene promoters resulting in significant alterations in promoter specificity and activity, we have explored the relevance of these two nucleotide alterations in determining cancer-selective gene expression. We demonstrate that these two point mutations are required to transform a non-cancer-specific promoter (pGADD) into a cancer-selective promoter (pGAPE). Additionally, we found GATA2 transcription factor binding sites in the GAPE-Prom, which regulates pGAPE activity selectively in cancer cells. This newly created pGAPE has all the necessary elements making it an appropriate genetic tool to noninvasively deliver imaging agents to follow tumor growth and progression to metastasis and for generating conditionally replicating adenoviruses that can express and deliver their payload exclusively in cancer. Abstract Progression-elevated gene-3 (PEG-3) and rat growth arrest and DNA damage-inducible gene-34 (GADD34) display significant sequence homology with regulation predominantly transcriptional. The rat full-length (FL) and minimal (min) PEG-3 promoter display cancer-selective expression in rodent and human tumors, allowing for cancer-directed regulation of transgenes, viral replication and in vivo imaging of tumors and metastases in animals, whereas the FL- and min-GADD34-Prom lack cancer specificity. Min-PEG-Prom and min-GADD34-Prom have identical sequences except for two single-point mutation differences (at −260 bp and +159 bp). Engineering double mutations in the min-GADD34-Prom produce the GAPE-Prom. Changing one base pair (+159) or both point mutations in the min-GADD34-Prom, but not the FL-GADD34-Prom, results in cancer-selective transgene expression in diverse cancer cells (including prostate, breast, pancreatic and neuroblastoma) vs. normal counterparts. Additionally, we identified a GATA2 transcription factor binding site, promoting cancer specificity when both min-PEG-Prom mutations are present in the GAPE-Prom. Taken together, introducing specific point mutations in a rat min-GADD34-Prom converts this non-cancer-specific promoter into a cancer-selective promoter, and the addition of GATA2 with existing AP1 and PEA3 transcription factors enhances further cancer-selective activity of the GAPE-Prom. The GAPE-Prom provides a genetic tool to specifically regulate transgene expression in cancer cells.
Collapse
|
3
|
Creeden JF, Alganem K, Imami AS, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Kinome Array Profiling of Patient-Derived Pancreatic Ductal Adenocarcinoma Identifies Differentially Active Protein Tyrosine Kinases. Int J Mol Sci 2020; 21:ijms21228679. [PMID: 33213062 PMCID: PMC7698519 DOI: 10.3390/ijms21228679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer remains one of the most difficult malignancies to treat. Minimal improvements in patient outcomes and persistently abysmal patient survival rates underscore the great need for new treatment strategies. Currently, there is intense interest in therapeutic strategies that target tyrosine protein kinases. Here, we employed kinome arrays and bioinformatic pipelines capable of identifying differentially active protein tyrosine kinases in different patient-derived pancreatic ductal adenocarcinoma (PDAC) cell lines and wild-type pancreatic tissue to investigate the unique kinomic networks of PDAC samples and posit novel target kinases for pancreatic cancer therapy. Consistent with previously described reports, the resultant peptide-based kinome array profiles identified increased protein tyrosine kinase activity in pancreatic cancer for the following kinases: epidermal growth factor receptor (EGFR), fms related receptor tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR-3), insulin receptor (INSR), ephrin receptor A2 (EPHA2), platelet derived growth factor receptor alpha (PDGFRA), SRC proto-oncogene kinase (SRC), and tyrosine kinase non receptor 2 (TNK2). Furthermore, this study identified increased activity for protein tyrosine kinases with limited prior evidence of differential activity in pancreatic cancer. These protein tyrosine kinases include B lymphoid kinase (BLK), Fyn-related kinase (FRK), Lck/Yes-related novel kinase (LYN), FYN proto-oncogene kinase (FYN), lymphocyte cell-specific kinase (LCK), tec protein kinase (TEC), hemopoietic cell kinase (HCK), ABL proto-oncogene 2 kinase (ABL2), discoidin domain receptor 1 kinase (DDR1), and ephrin receptor A8 kinase (EPHA8). Together, these results support the utility of peptide array kinomic analyses in the generation of potential candidate kinases for future pancreatic cancer therapeutic development.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Liu SH, Yu J, Sanchez R, Liu X, Heidt D, Willey J, Nemunaitis J, Brunicardi FC. A novel synthetic human insulin super promoter for targeting PDX-1-expressing pancreatic cancer. Cancer Lett 2018; 418:75-83. [PMID: 29309817 DOI: 10.1016/j.canlet.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Our previous studies have shown that a rat insulin promoter II fragment (RIP) was used to effectively target pancreatic adenocarcinoma (PDAC) and insulinoma that over-express pancreatic and duodenal homeobox-1 (PDX-1). To enhance the activity and specificity of the human insulin promoter, we engineered a synthetic human insulin super-promoter (SHIP). Reporter assay demonstrated that SHIP1 was the most powerful promoter among all of the SHIPs and had far greater activity than the endogenous human insulin promoters and RIP in PDAC expressing PDX-1. Over-expression, knockdown and competitive inhibition of PDX-1 expression assay proved that PDX-1 is a critical transcript factor to regulate the activity of SHIP1. SHIP1-driven viral thymidine kinase followed by ganciclovir (SHIP1-TK/GCV) resulted in cytotoxicity to PDAC cells in vitro. Systemic delivery of SHIP1-TK/GCV in PDAC xenograft mice significantly suppressed PANC-1 tumor growth in vivo greater than RIP-TK/GCV and CMV-TK/GCV controls (p < .05). These preclinical data suggest that SHIP1 is a powerful novel promoter that can be used to target human PDAC expressing PDX-1 in clinical trials. Furthermore, this novel strategy of engineering synthetic super-promoters could be used for other cancer targets.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - Juehua Yu
- Department of Surgery, University of California at Los Angeles, CA, USA
| | - Robbi Sanchez
- Department of Surgery, University of California at Los Angeles, CA, USA
| | - Xiaochen Liu
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - David Heidt
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - James Willey
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | | |
Collapse
|
5
|
Wu JX, Liu SH, Nemunaitis JJ, Brunicardi FC. Liposomal insulin promoter-thymidine kinase gene therapy followed by ganciclovir effectively ablates human pancreatic cancer in mice. Cancer Lett 2015; 359:206-10. [PMID: 25596375 DOI: 10.1016/j.canlet.2015.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
PDX1 is overexpressed in pancreatic cancer, and activates the insulin promoter (IP). Adenoviral IP-thymidine kinase and ganciclovir (TK/GCV) suppresses human pancreatic ductal carcinoma (PDAC) in mice, but repeated doses carry significant toxicity. We hypothesized that multiple cycles of liposomal IP-TK/GCV ablate human PDAC in SCID mice with minimal toxicity compared to adenoviral IP-TK/GCV. SCID mice with intraperitoneal human pancreatic cancer PANC-1 tumor implants were given a single cycle of 35 µg iv L-IP-TK, or four cycles of 1, 10, 20, 30, or 35 µg iv L-IP-TK (n = 20 per group), followed by intraperitoneal GCV. Insulin and glucose levels were monitored in mice treated with four cycles of 35 µg iv L-IP-TK. We found that four cycles of 10-35 µg L-IP-TK/GCV ablated more PANC-1 tumor volume compared to a single cycle with 35 µg. Mice that received four cycles of 10 µg L-IP-TK demonstrated the longest survival (P < 0.05), with a median survival of 126 days. In comparison, mice that received a single cycle of 35 µg L-IP-TK/GCV or GCV alone survived a median of 92 days and 68.7 days, respectively. There were no significant changes in glucose or insulin levels following treatment. In conclusion, multiple cycles of liposomal IP-TK/GCV ablate human PDAC in SCID mice with minimal toxicity, suggesting non-viral vectors are superior to adenoviral vectors for IP-gene therapy.
Collapse
Affiliation(s)
- James X Wu
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Shi-He Liu
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | | |
Collapse
|
6
|
PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform. PLoS One 2012. [PMID: 22905092 DOI: 10.1371/journal.pone.004045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a "drugable" target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNA(PDX-1), was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNA(humanPDX-1) lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNA(mousePDX-1) lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNA(mousePDX-1) lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.
Collapse
|
7
|
PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform. PLoS One 2012; 7:e40452. [PMID: 22905092 PMCID: PMC3414490 DOI: 10.1371/journal.pone.0040452] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/07/2012] [Indexed: 11/19/2022] Open
Abstract
Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a "drugable" target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNA(PDX-1), was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNA(humanPDX-1) lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNA(mousePDX-1) lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNA(mousePDX-1) lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.
Collapse
|
8
|
Liu SH, Smyth-Templeton N, Davis AR, Davis EA, Ballian N, Li M, Liu H, Fisher W, Brunicardi FC. Multiple treatment cycles of liposome-encapsulated adenoviral RIP-TK gene therapy effectively ablate human pancreatic cancer cells in SCID mice. Surgery 2011; 149:484-95. [PMID: 21295812 DOI: 10.1016/j.surg.2010.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/24/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adenoviral gene therapy has been applied widely for cancer therapy; however, transient gene expression as result of humoral immunoneutralization response to adenovirus limits its effect. The purpose of this study is to determine whether DOTAP:cholesterol liposome could shield adenovirus from neutralizing antibody and permit the use of multiple cycles of intravenous liposome encapsulated serotype 5 adenoviral rat insulin promoter directed thymidine kinase (L-A-5-RIP-TK) with ganciclovir (GCV) to enhance its effect. METHODS The effect of multiple cycles of systemic L-A-5-RIP-TK/GCV therapy was evaluated in grouped PANC-1 SCID mice treated with different numbers of cycles. Humoral immune response to A-5-RIP-TK or L-A-5-RIP-TK was assessed using C57/B6J mice challenged with adenovirus or liposome adenovirus complex. RESULTS The minimal residual tumor burden (3.2 ± 0.6 mm(3)) and greatest survival time (153.0 ± 6 days) were obtained in the mice receiving 4 and 3 cycles of therapy, respectively. Toxicity to islet cells associated with RIP-TK/GCV therapy was observed after 4 cycles. DOTAP:chol-encapsulated adenovectors were able to protect adenovectors from the neutralization of high titer of anti-adenoviral antibodies induced by itself. CONCLUSION Multiple treatment cycles of L-A-5-RIP-TK/GCV ablate human PANC-1 cells effectively in SCID mice; however, the mice become diabetic and have substantial mortality after the 4th cycle. Liposome-encapsulated adenovirus is functionally resistant to the neutralizing effects of anti-adenoviral antibodies, suggesting feasibility of multiple cycles of therapy. Liposome encapsulation of the adenovirus may be a promising strategy for repeated delivery of systemic adenoviral gene therapy.
Collapse
Affiliation(s)
- Shi-He Liu
- Michael E. DeBakey Department of Surgery, Elkins Pancreas Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fillat C, Jose A, Bofill-Deros X, Mato-Berciano A, Maliandi MV, Sobrevals L. Pancreatic cancer gene therapy: from molecular targets to delivery systems. Cancers (Basel) 2011; 3:368-95. [PMID: 24212620 PMCID: PMC3756366 DOI: 10.3390/cancers3010368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 02/08/2023] Open
Abstract
The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.
Collapse
Affiliation(s)
- Cristina Fillat
- Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomèdica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
OBJECTIVES The purpose of this study was to investigate whether pancreatic and duodenal homeobox factor 1 (PDX-1) could serve as a potential molecular target for the treatment of pancreatic cancer. METHODS Cell proliferation, invasion capacity, and protein levels of cell cycle mediators were determined in human pancreatic cancer cells transfected with mouse PDX-1 (mPDX-1) alone or with mPDX-1 short hairpin RNA (shRNA) and/or human PDX-1 shRNA (huPDX-1 shRNA). Tumor cell growth and apoptosis were also evaluated in vivo in PANC-1 tumor-bearing severe combined immunodeficient mice receiving multiple treatments of intravenous liposomal huPDX-1 shRNA. RESULTS mPDX-1 overexpression resulted in the significant increase of cell proliferation and invasion in MIA PaCa2, but not PANC-1 cells. This effect was blocked by knocking down mPDX-1 expression with mPDX-1 shRNA. Silencing of huPDX-1 expression in PANC-1 cells inhibited cell proliferation in vitro and suppressed tumor growth in vivo which was associated with increased tumor cell apoptosis. PDX-1 overexpression resulted in dysregulation of the cell cycle with up-regulation of cyclin D, cyclin E, and Cdk2 and down-regulation of p27. CONCLUSIONS PDX-1 regulates cell proliferation and invasion in human pancreatic cancer cells. Down-regulation of PDX-1 expression inhibits pancreatic cancer cell growth in vitro and in vivo, implying its use as a potential therapeutic target for the treatment of pancreatic cancer.
Collapse
|
11
|
Abstract
For bladder cancer, intravesical chemo/immunotherapy is widely used as adjuvant therapies after surgical transurethal resection, while systemic therapy is typically reserved for higher stage, muscle-invading, or metastatic diseases. The goal of intravesical therapy is to eradicate existing or residual tumors through direct cytoablation or immunostimulation. The unique properties of the urinary bladder render it a fertile ground for evaluating additional novel experimental approaches to regional therapy, including iontophoresis/electrophoresis, local hyperthermia, co-administration of permeation enhancers, bioadhesive carriers, magnetic-targeted particles and gene therapy. Furthermore, due to its unique anatomical properties, the drug concentration-time profiles in various layers of bladder tissues during and after intravesical therapy can be described by mathematical models comprised of drug disposition and transport kinetic parameters. The drug delivery data, in turn, can be combined with the effective drug exposure to infer treatment efficacy and thereby assists the selection of optimal regimens. To our knowledge, intravesical therapy of bladder cancer represents the first example where computational pharmacological approach was used to design, and successfully predicted the outcome of, a randomized phase III trial (using mitomycin C). This review summarizes the pharmacological principles and the current status of intravesical therapy, and the application of computation to optimize the drug delivery to target sites and the treatment efficacy.
Collapse
|
12
|
Liu SH, Davis A, Li Z, Ballian N, Davis E, Wang XP, Fisher W, Brunicardi FC. Effective ablation of pancreatic cancer cells in SCID mice using systemic adenoviral RIP-TK/GCV gene therapy. J Surg Res 2007; 141:45-52. [PMID: 17512546 DOI: 10.1016/j.jss.2007.02.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/20/2007] [Accepted: 02/26/2007] [Indexed: 01/25/2023]
Abstract
BACKGROUND Studies have demonstrated that adenovirus subtype 5 mediated rat insulin promoter directed thymidine kinase (A-5-RIP-TK)/ganciclovir (GCV) gene therapy resulted in significant enhanced cytotoxicity to both PANC-1 and MIA PaCa2 pancreatic cancer cells in vitro. However, little is known about the effect in vivo. In this study we examine the in vivo safety and efficacy of intravenous A-5-RIP-TK/GCV gene therapy. MATERIALS AND METHODS 1 x 10(6) Mia PaCa2 cells were injected intraperitoneally (i.p.) into SCID mice to create a mouse model of human pancreatic cancer. A-5-RIP-TK gene construct was administered intravenously (i.v.), followed by i.p. GCV administration. Intravenous injection of A-5-RIP-lacZ reporter gene constructs was used for evaluation of Ad-RIP-gene expression in tumors and other tissues. Optimal adenoviral and GCV doses and treatment duration were determined. Tumor volume, serum insulin, and glucose levels were measured. Immunohistochemical staining of pancreata and tumors were performed to assess morphology and hormone expression and apoptotic rates were determined. RESULTS All A-5-RIP-TK/GCV-treated mice had reduced tumor volume compared with controls, but maximal tumor volume reduction was observed with 10(8) vp followed by GCV treatment for 4 wk. A-5-RIP-TK/GCV gene therapy contributed to significant survival advantage in MIA PaCa2 bearing mice, and the greatest survival benefit was observed with 10(8) vp and was not affected by length of treatment of GCV. A-5-RIP-TK/GCV therapy increased PDX-1 expression and tumor cells apoptosis, and altered islet morphology. However, A-5-RIP-TK/GCV gene therapy caused diabetes associated with islet cell apoptosis, increased delta-cells and reduced pancreatic polypeptide (PP)-cell numbers. CONCLUSIONS Systemically administered A-5-RIP-TK/GCV is an effective treatment of pancreatic cancer. A-5-RIP-TK/GCV cytotoxicity to malignant cells varies with adenoviral dose and length of GCV treatment. However, A-5-RIP-TK/GCV is associated with islet cell toxicity and diabetogenesis. The type of diabetes observed is distinct from Types 1 and 2 and is associated with islet cell apoptosis and reduced delta- and PP-cells.
Collapse
Affiliation(s)
- Shi-He Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|