1
|
Mert S, Bulutoglu B, Chu C, Dylewski M, Lin FM, Yu YM, Yarmush ML, Sheridan RL, Uygun K. Multiorgan Metabolomics and Lipidomics Provide New Insights Into Fat Infiltration in the Liver, Muscle Wasting, and Liver-Muscle Crosstalk Following Burn Injury. J Burn Care Res 2020; 42:269-287. [PMID: 32877506 DOI: 10.1093/jbcr/iraa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burn injury mediated hypermetabolic syndrome leads to increased mortality among severe burn victims, due to liver failure and muscle wasting. Metabolic changes may persist up to 2 years following the injury. Thus, understanding the underlying mechanisms of the pathology is crucially important to develop appropriate therapeutic approaches. We present detailed metabolomic and lipidomic analyses of the liver and muscle tissues in a rat model with a 30% body surface area burn injury located at the dorsal skin. Three hundred and thirty-eight of 1587 detected metabolites and lipids in the liver and 119 of 1504 in the muscle tissue exhibited statistically significant alterations. We observed excessive accumulation of triacylglycerols, decreased levels of S-adenosylmethionine, increased levels of glutamine and xenobiotics in the liver tissue. Additionally, the levels of gluconeogenesis, glycolysis, and tricarboxylic acid cycle metabolites are generally decreased in the liver. On the other hand, burn injury muscle tissue exhibits increased levels of acyl-carnitines, alpha-hydroxyisovalerate, ophthalmate, alpha-hydroxybutyrate, and decreased levels of reduced glutathione. The results of this preliminary study provide compelling observations that liver and muscle tissues undergo distinctly different changes during hypermetabolism, possibly reflecting liver-muscle crosstalk. The liver and muscle tissues might be exacerbating each other's metabolic pathologies, via excessive utilization of certain metabolites produced by each other.
Collapse
Affiliation(s)
- Safak Mert
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Beyza Bulutoglu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christopher Chu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maggie Dylewski
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Florence M Lin
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Yong-Ming Yu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Martin L Yarmush
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Robert L Sheridan
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
2
|
Design and Testing of an Experimental Steam-Induced Burn Model in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9878109. [PMID: 29159185 PMCID: PMC5660770 DOI: 10.1155/2017/9878109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Background Most of the current models for experimental burns pose difficulties in ensuring consistency and standardization. Aim of Study We aimed to develop an automated, reproducible technique for experimental burns using steam-based heat transfer. Methods The system developed for steam exposure was based on a novel, integrated, computer-controlled design. Three groups of rats were exposed to steam for 1, 3, and 7 seconds. The lesions were evaluated after 20 minutes, 48 hours, and 72 hours after burn induction. Results One-second steam application produced a superficial second-degree burn; three-second application induced deep second-degree burn; and seven-second application led to a third-degree burn. Conclusion The high level of automation of our integrated, computer-controlled system makes the difference between our system and other models, by ensuring the control of the duration of exposure, temperature, and pressure and eliminating as many potential human generated errors as possible. The automated system can accurately reproduce specific types of burns, according to histological assessment. This model could generate the reproducible data needed in the study of burn pathology and in order to assess new treatments.
Collapse
|
3
|
Chomiski V, Gragnani A, Bonucci J, Correa SAA, Noronha SMRD, Ferreira LM. Keratinocyte growth factor and the expression of wound-healing-related genes in primary human keratinocytes from burn patients. Acta Cir Bras 2017; 31:505-12. [PMID: 27579877 DOI: 10.1590/s0102-865020160080000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/21/2016] [Indexed: 01/29/2023] Open
Abstract
PURPOSE To evaluate the effect of keratinocyte growth factor (KGF) treatment on the expression of wound-healing-related genes in cultured keratinocytes from burn patients. METHODS Keratinocytes were cultured and divided into 4 groups (n=4 in each group): TKB (KGF-treated keratinocytes from burn patients), UKB (untreated keratinocytes from burn patients), TKC (KGF-treated keratinocytes from controls), and UKC (untreated keratinocytes from controls). Gene expression analysis using quantitative polymerase chain reaction (qPCR) array was performed to compare (1) TKC versus UKC, (2) UKB versus UKC, (3) TKB versus UKC, (4) TKB versus UKB, (5) TKB versus TKC, and (6) UKB versus TKC. RESULTS Comparison 1 showed one down-regulated and one up-regulated gene; comparisons 2 and 3 resulted in the same five down-regulated genes; comparison 4 had no significant difference in relative gene expression; comparison 5 showed 26 down-regulated and 7 up-regulated genes; and comparison 6 showed 25 down-regulated and 11 up-regulated genes. CONCLUSION There was no differential expression of wound-healing-related genes in cultured primary keratinocytes from burn patients treated with keratinocyte growth factor.
Collapse
Affiliation(s)
- Verônica Chomiski
- Fellow MSc degree, Division of Plastic Surgery, Department of Surgery, Universidade Federal de São Paulo (UNIFESP0, Sao Paulo-SP, Brazil. Acquisition and interpretation of data, technical procedures, manuscript writing
| | - Alfredo Gragnani
- PhD, Associate Professor, Division of Plastic Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Conception, design, intellectual and scientific content of the study; analysis and interpretation of data; manuscript writing; critical revision
| | - Jéssica Bonucci
- Fellow MSc degree, Division of Plastic Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Acquisition and interpretation of data, technical procedures
| | - Silvana Aparecida Alves Correa
- PhD, Postdoctoral degree, Division of Plastic Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Acquisition and interpretation of data, technical procedures, acquisition of data, manuscript writing
| | - Samuel Marcos Ribeiro de Noronha
- PhD, Postdoctoral degree, Division of Plastic Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Acquisition and interpretation of data, manuscript writing
| | - Lydia Masako Ferreira
- Head, Full Professor, Division of Plastic Surgery, UNIFESP, Researcher 1A-CNPq, Director Medicine III-CAPES, Sao Paulo-SP, Brazil. Intellectual and scientific content of the study
| |
Collapse
|
4
|
Kamisoglu K, Acevedo A, Almon RR, Coyle S, Corbett S, Dubois DC, Nguyen TT, Jusko WJ, Androulakis IP. Understanding Physiology in the Continuum: Integration of Information from Multiple - Omics Levels. Front Pharmacol 2017; 8:91. [PMID: 28289389 PMCID: PMC5327699 DOI: 10.3389/fphar.2017.00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/13/2017] [Indexed: 01/18/2023] Open
Abstract
In this paper, we discuss approaches for integrating biological information reflecting diverse physiologic levels. In particular, we explore statistical and model-based methods for integrating transcriptomic, proteomic and metabolomics data. Our case studies reflect responses to a systemic inflammatory stimulus and in response to an anti-inflammatory treatment. Our paper serves partly as a review of existing methods and partly as a means to demonstrate, using case studies related to human endotoxemia and response to methylprednisolone (MPL) treatment, how specific questions may require specific methods, thus emphasizing the non-uniqueness of the approaches. Finally, we explore novel ways for integrating -omics information with PKPD models, toward the development of more integrated pharmacology models.
Collapse
Affiliation(s)
- Kubra Kamisoglu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Alison Acevedo
- Department of Biomedical Engineering, Rutgers University, Piscataway NJ, USA
| | - Richard R Almon
- Department of Biological Sciences, University at Buffalo, Buffalo NY, USA
| | - Susette Coyle
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick NJ, USA
| | - Siobhan Corbett
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick NJ, USA
| | - Debra C Dubois
- Department of Biological Sciences, University at Buffalo, Buffalo NY, USA
| | - Tung T Nguyen
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway NJ, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University, PiscatawayNJ, USA; Department of Chemical Engineering, Rutgers University, PiscatawayNJ, USA
| |
Collapse
|
5
|
Analgesic effect of dimethyl trisulfide in mice is mediated by TRPA1 and sst 4 receptors. Nitric Oxide 2017; 65:10-21. [PMID: 28137611 DOI: 10.1016/j.niox.2017.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
TRPA1 receptors are calcium-permeable ligand-gated channels expressed in primary sensory neurons and involved in inflammation and pain. Activation of these neurons might have analgesic effect. Suggested mechanism of analgesic effect mediated by TRPA1 activation is the release of somatostatin (SOM) and its action on sst4 receptors. In the present study analgesic effect of TRPA1 activation on primary sensory neurons by organic trisulfide compound dimethyl trisulfide (DMTS) presumably leading to SOM release was investigated. Opening of TRPA1 by DMTS in CHO cells was examined by patch-clamp and fluorescent Ca2+ detection. Ca2+ influx upon DMTS administration in trigeminal ganglion (TRG) neurons of TRPA1 receptor wild-type (WT) and knockout (KO) mice was detected by ratiometric Ca2+ imaging. SOM release from sensory nerves of murine skin was assessed by radioimmunoassay. Analgesic effect of DMTS in mild heat injury-induced mechanical hyperalgesia was examined by dynamic plantar aesthesiometry. Regulatory role of DMTS on deep body temperature (Tb) was measured by thermocouple thermometry with respirometry and by telemetric thermometry. DMTS produced TRPA1-mediated currents and elevated [Ca2+]i in CHO cells. Similar data were obtained in TRG neurons. DMTS released SOM from murine sensory neurons TRPA1-dependently. DMTS exerted analgesic effect mediated by TRPA1 and sst4 receptors. DMTS-evoked hypothermia and hypokinesis were attenuated in freely-moving TRPA1 KO animals. Our study has presented original evidence regarding analgesic action of DMTS which might be due to TRPA1-mediated SOM release from sensory neurons and activation of sst4 receptors. DMTS could be a novel analgesic drug candidate.
Collapse
|
6
|
Mirza N, Appleton R, Burn S, Carr D, Crooks D, du Plessis D, Duncan R, Farah JO, Josan V, Miyajima F, Mohanraj R, Shukralla A, Sills GJ, Marson AG, Pirmohamed M. Identifying the biological pathways underlying human focal epilepsy: from complexity to coherence to centrality. Hum Mol Genet 2015; 24:4306-16. [DOI: 10.1093/hmg/ddv163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
|
7
|
Rao R, Orman MA, Berthiaume F, Androulakis IP. Dynamics of hepatic gene expression and serum cytokine profiles in single and double-hit burn and sepsis animal models. Data Brief 2015. [PMID: 26217749 PMCID: PMC4510136 DOI: 10.1016/j.dib.2015.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We simulate the pathophysiology of severe burn trauma and burn-induced sepsis, using rat models of experimental burn injury and cecal ligation and puncture (CLP) either individually (singe-hit model) or in combination (double-hit model). The experimental burn injury simulates a systemic but sterile pro-inflammatory response, while the CLP simulates the effect of polymicrobial sepsis. Given the liver׳s central role in mediating the host immune response and onset of hypermetabolism after burn injury, elucidating the alterations in hepatic gene expression in response to injury can lead to a better understanding of the regulation of the inflammatory response, whereas circulating cytokine protein expression, reflects key systemic inflammatory mediators. In this article, we present both the hepatic gene expression and circulating cytokine/chemokine protein expression data for the above-mentioned experimental model to gain insights into the temporal dynamics of the inflammatory and hypermetabolic response following burn and septic injury. This data article supports results discussed in research articles (Yang et al., 2012 [1,4]; Mattick et al. 2012, 2013 [2,3]; Nguyen et al., 2014 [5]; Orman et al., 2011, 2012 [6–8]).
Collapse
Affiliation(s)
- Rohit Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mehmet A Orman
- Chemical and Biological Engineering Department, Princeton University, Princeton, NJ 08544, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA ; Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Animal models in burn research. Cell Mol Life Sci 2014; 71:3241-55. [PMID: 24714880 DOI: 10.1007/s00018-014-1612-5] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research.
Collapse
|
9
|
Nguyen TT, Mattick JSA, Yang Q, Orman MA, Ierapetritou MG, Berthiaume F, Androulakis IP. Bioinformatics analysis of transcriptional regulation of circadian genes in rat liver. BMC Bioinformatics 2014; 15:83. [PMID: 24666587 PMCID: PMC3987685 DOI: 10.1186/1471-2105-15-83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/06/2014] [Indexed: 02/01/2023] Open
Abstract
Background The circadian clock is a critical regulator of biological functions controlling behavioral, physiological and biochemical processes. Because the liver is the primary regulator of metabolites within the mammalian body and the disruption of circadian rhythms in liver is associated with severe illness, circadian regulators would play a strong role in maintaining liver function. However, the regulatory structure that governs circadian dynamics within the liver at a transcriptional level remains unknown. To explore this aspect, we analyzed hepatic transcriptional dynamics in Sprague-Dawley rats over a period of 24 hours to assess the genome-wide responses. Results Using an unsupervised consensus clustering method, we identified four major gene expression clusters, corresponding to central carbon and nitrogen metabolism, membrane integrity, immune function, and DNA repair, all of which have dynamics which suggest regulation in a circadian manner. With the assumption that transcription factors (TFs) that are differentially expressed and contain CLOCK:BMAL1 binding sites on their proximal promoters are likely to be clock-controlled TFs, we were able to use promoter analysis to putatively identify additional clock-controlled TFs besides PARF and RORA families. These TFs are both functionally and temporally related to the clusters they regulate. Furthermore, we also identified significant sets of clock TFs that are potentially transcriptional regulators of gene clusters. Conclusions All together, we were able to propose a regulatory structure for circadian regulation which represents alternative paths for circadian control of different functions within the liver. Our prediction has been affirmed by functional and temporal analyses which are able to extend for similar studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Abstract
AbstractSevere thermal injury may be complicated by dysfunction of organs distant from the original burn wound, including the liver, and represents a serious clinical problem. Although pathophysiology of burn-induced liver injury remains unclear, increasing evidence implicate activation of inflammatory response, oxidative stress, endothelial dysfunction and microcirculatory disorders as the main mechanisms of hepatic injury. Several studies suggest melatonin as a multifunctional indolamine that counteracts some of the pathophysiologic steps and displays significant beneficial effects against burn-induced cellular injury. This review summarizes the role of melatonin in restricting the burn-induced hepatic injury and focuses on its effects on oxidative stress, inflammatory response, endothelial dysfunction and microcirculatory disorders as well as on signaling pathways such as regulation of nuclear erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappaB (NF-kB). Further studies are necessary to elucidate the modulating effect of melatonin on the transcription factor responsible for the regulation of the pro-inflammatory and antioxidant genes involved in burn injuries.
Collapse
|
11
|
Wang Y, Borlak J, Tong W. Toxicogenomics – A Drug Development Perspective. GENOMIC BIOMARKERS FOR PHARMACEUTICAL DEVELOPMENT 2014:127-155. [DOI: 10.1016/b978-0-12-397336-8.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Effect of fasting on the metabolic response of liver to experimental burn injury. PLoS One 2013; 8:e54825. [PMID: 23393558 PMCID: PMC3564862 DOI: 10.1371/journal.pone.0054825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022] Open
Abstract
Liver metabolism is altered after systemic injuries such as burns and trauma. These changes have been elucidated in rat models of experimental burn injury where the liver was isolated and perfused ex vivo. Because these studies were performed in fasted animals to deplete glycogen stores, thus simplifying quantification of gluconeogenesis, these observations reflect the combined impact of fasting and injury on liver metabolism. Herein we asked whether the metabolic response to experimental burn injury is different in fed vs. fasted animals. Rats were subjected to a cutaneous burn covering 20% of the total body surface area, or to similar procedures without administering the burn, hence a sham-burn. Half of the animals in the burn and sham-burn groups were fasted starting on postburn day 3, and the others allowed to continue ad libitum. On postburn day 4, livers were isolated and perfused for 1 hour in physiological medium supplemented with 10% hematocrit red blood cells. The uptake/release rates of major carbon and nitrogen sources, oxygen, and carbon dioxide were measured during the perfusion and the data fed into a mass balance model to estimate intracellular fluxes. The data show that in fed animals, injury increased glucose output mainly from glycogen breakdown and minimally impacted amino acid metabolism. In fasted animals, injury did not increase glucose output but increased urea production and the uptake of several amino acids, namely glutamine, arginine, glycine, and methionine. Furthermore, sham-burn animals responded to fasting by triggering gluconeogenesis from lactate; however, in burned animals the preferred gluconeogenic substrate was amino acids. Taken together, these results suggest that the fed state prevents the burn-induced increase in hepatic amino acid utilization for gluconeogenesis. The role of glycogen stores and means to increase and/or maintain internal sources of glucose to prevent increased hepatic amino acid utilization warrant further studies.
Collapse
|
13
|
Mattick JSA, Yang Q, Orman MA, Ierapetritou MG, Berthiaume F, Gale SC, Androulakis IP. Impact of burn priming on immune and metabolic functions of whole Liver in a rat cecal ligation and puncture model. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2013; 3:55-65. [PMID: 23386986 PMCID: PMC3560487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
Previously, we have shown that systemic insults in single injury models produced immunosuppressive effects in burn, and a strong acute phase response in sepsis through hepatic gene expression. In order to investigate the implications of these effects on a combined injury, a double hit model was explored to mimic the progression of clinical burn-sepsis. Rodents were subjected to a 20% total body surface area (TSA) full-thickness burn injury, and 48 hours later underwent cecal ligation and puncture (CLP) to induce sepsis. Pathways related to innate immune signaling through cytokines and NF-KB were co regulated with xenobiotic metabolism genes and acute phase protein genes, and that these genes were suppressed early, and then activated. Furthermore, we were able to identify that, in addition to amino acid metabolism, pyruvate metabolism, fatty acid metabolism and NRF-2 mediated oxidative stress genes were down regulated over the time course. Overall, these observed trends within the double hit burn-sepsis model represent unique immune and metabolic pathways and dynamics not found in either injury, including an early suppression followed by overreaction of pro inflammatory mediators, and an increase in amino acid metabolism at the expense of central carbon pathways.
Collapse
Affiliation(s)
- John SA Mattick
- Chemical and Biochemical Engineering Department, Rutgers, the State University of New JerseyPiscataway, NJ, 08854, USA
| | - Qian Yang
- Chemical and Biochemical Engineering Department, Rutgers, the State University of New JerseyPiscataway, NJ, 08854, USA
| | - Mehmet A Orman
- Chemical and Biochemical Engineering Department, Rutgers, the State University of New JerseyPiscataway, NJ, 08854, USA
| | - Marianthi G Ierapetritou
- Chemical and Biochemical Engineering Department, Rutgers, the State University of New JerseyPiscataway, NJ, 08854, USA
| | - Francois Berthiaume
- Biomedical Engineering Department, Rutgers, the State University of New JerseyPiscataway, NJ, 08854, USA
| | - Stephen C Gale
- Department of Surgery, RWJMS/UMDNJNew Brunswick, NJ, 08901, USA
| | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers, the State University of New JerseyPiscataway, NJ, 08854, USA
- Biomedical Engineering Department, Rutgers, the State University of New JerseyPiscataway, NJ, 08854, USA
| |
Collapse
|