1
|
Chen Y, Dai J, Chen P, Dai Q, Chen Y, Li Y, Lu M, Qin S, Wang Q. Long non-coding RNAs-sphingolipid metabolism nexus: Potential targets for cancer treatment. Pharmacol Res 2024; 210:107539. [PMID: 39647803 DOI: 10.1016/j.phrs.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of cancer pathogenesis, influencing various cellular processes and contributing to tumorigenesis. Sphingolipid metabolism has garnered interest as a potential target for cancer therapy owing to its considerable diagnostic and prognostic value. Recent studies have demonstrated that lncRNAs regulate tumor-associated metabolic reprogramming via sphingolipid metabolism. However, the precise nature of the interactions between lncRNAs and sphingolipid metabolism remains unclear. This review summarizes the key roles of lncRNAs and sphingolipid metabolism in tumorigenesis. We emphasize that the interaction between lncRNAs and sphingolipid metabolism influences their impact on both cancer prognosis and drug resistance. These findings suggest that lncRNA-sphingolipid metabolism interaction holds great potential as a newl target for cancer treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jing Dai
- School of pharmacy, Chengdu Medical college, Chengdu, China.
| | - Peng Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Quan Dai
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ya Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuying Li
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Man Lu
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Shugang Qin
- Department of Exerimental Research, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuju Wang
- Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
2
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Chen L, Wang L, Han Z, Qin P, Niu G, Du J. SKI-349, a Sphingosine Kinases 1/2 Inhibitor, Suppresses Cell Viability, Invasion, and AKT/mTOR Signaling Pathway, and Shows Synergistic Cytotoxic Effects with Sorafenib in Hepatocellular Carcinoma. TOHOKU J EXP MED 2024; 262:173-180. [PMID: 38123304 DOI: 10.1620/tjem.2023.j100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
SKI-349 is a novel sphingosine kinases (SPHK) inhibitor with anti-tumor effects. This study aimed to assess the effect of SKI-349 on cell biological behaviors, downstream pathways, and its synergistic effect with sorafenib in hepatocellular carcinoma (HCC). HCC cell lines (Huh7 and Hep3B) were treated with SKI-349 at concentrations of 1, 2, 4, or 8 μM. Then, SPHK1/2 activity, cell viability, proliferation, apoptosis, invasion, and protein expressions of phosphorylated-protein kinase B (p-AKT), AKT, phosphorylated-mammalian target of rapamycin (p-mTOR) and mTOR were detected. Combination index values of SKI-349 (0, 1, 2, 4, or 8 μM) and sorafenib (0, 2.5, 5, 10, or 20 μM) were calculated. SKI-349 decreased the relative SPHK1 and SPHK2 activity compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Meanwhile, SKI-349 reduced cell viability, 5-ethynyl-2'-deoxyuridine (EdU) positive cells, and invasive cells, while it increased apoptotic cells compared to blank control in a dose-dependent manner in Huh7 and Hep3B cell lines. Based on the western blot assay, SKI-349 decreased the ratio of p-AKT to AKT and that of p-mTOR to mTOR compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Additionally, SKI-349 combined with sorafenib declined cell viability with concentration gradient effects compared to SKI-349 sole treatment, and they had synergistic cytotoxic effects in Huh7 and Hep3B cell lines. SKI-349 suppresses SPHK1 and SPHK2 activity, cell viability, invasion, and AKT/mTOR signaling pathway, as well as exhibits a synergistic cytotoxic effect with sorafenib in HCC.
Collapse
Affiliation(s)
- Liqiao Chen
- Department of Basic Medical, Xingtai Medical College
| | | | - Zongqi Han
- Department of Basic Medical, Xingtai Medical College
| | - Peng Qin
- Department of Vascular Intervention, The Second Affiliated Hospital of Xingtai Medical College
| | - Guangxu Niu
- Department of Pathology, Handan Central Hospital
| | - Jingxia Du
- Department of Basic Medical, Xingtai Medical College
| |
Collapse
|
4
|
Shi R, Wang J, Zeng X, Luo H, Yang X, Guo Y, Yi L, Deng H, Yang P. Effect of anatomical liver resection on early postoperative recurrence in patients with hepatocellular carcinoma assessed based on a nomogram: a single-center study in China. Front Oncol 2024; 14:1365286. [PMID: 38476367 PMCID: PMC10929612 DOI: 10.3389/fonc.2024.1365286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction We aimed to investigate risk factors for early postoperative recurrence in patients with hepatocellular carcinoma (HCC) and determine the effect of surgical methods on early recurrence to facilitate predicting the risk of early postoperative recurrence in such patients and the selection of appropriate treatment methods. Methods We retrospectively analyzed clinical data concerning 428 patients with HCC who had undergone radical surgery at Mianyang Central Hospital between January 2015 and August 2022. Relevant routine preoperative auxiliary examinations and regular postoperative telephone or outpatient follow-ups were performed to identify early postoperative recurrence. Risk factors were screened, and predictive models were constructed, including patients' preoperative ancillary tests, intra- and postoperative complications, and pathology tests in relation to early recurrence. The risk of recurrence was estimated for each patient based on a prediction model, and patients were categorized into low- and high-risk recurrence groups. The effect of anatomical liver resection (AR) on early postoperative recurrence in patients with HCC in the two groups was assessed using survival analysis. Results In total, 353 study patients were included. Multifactorial logistic regression analysis findings suggested that tumor diameter (≥5/<5 cm, odds ratio [OR] 2.357, 95% confidence interval [CI] 1.368-4.059; P = 0.002), alpha fetoprotein (≥400/<400 ng/L, OR 2.525, 95% CI 1.334-4.780; P = 0.004), tumor number (≥2/<2, OR 2.213, 95% CI 1.147-4.270; P = 0.018), microvascular invasion (positive/negative, OR 3.230, 95% CI 1.880-5.551; P < 0.001), vascular invasion (positive/negative, OR 4.472, 95% CI 1.395-14.332; P = 0.012), and alkaline phosphatase level (>125/≤125 U/L, OR 2.202, 95% CI 1.162-4.173; P = 0.016) were risk factors for early recurrence following radical HCC surgery. Model validation and evaluation showed that the area under the curve was 0.813. Hosmer-Lemeshow test results (X 2 = 1.225, P = 0.996 > 0.05), results from bootstrap self-replicated sampling of 1,000 samples, and decision curve analysis showed that the model also discriminated well, with potentially good clinical utility. Using this model, patients were stratified into low- and high-risk recurrence groups. One-year disease-free survival was compared between the two groups with different surgical approaches. Both groups benefited from AR in terms of prevention of early postoperative recurrence, with AR benefits being more pronounced and intraoperative bleeding less likely in the high-risk recurrence group. Discussion With appropriate surgical techniques and with tumors being realistically amenable to R0 resection, AR is a potentially useful surgical procedure for preventing early recurrence after radical surgery in patients with HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pei Yang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
5
|
Nojima H, Shimizu H, Murakami T, Shuto K, Koda K. Critical Roles of the Sphingolipid Metabolic Pathway in Liver Regeneration, Hepatocellular Carcinoma Progression and Therapy. Cancers (Basel) 2024; 16:850. [PMID: 38473211 DOI: 10.3390/cancers16050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The sphingolipid metabolic pathway, an important signaling pathway, plays a crucial role in various physiological processes including cell proliferation, survival, apoptosis, and immune regulation. The liver has the unique ability to regenerate using bioactive lipid mediators involving multiple sphingolipids, including ceramide and sphingosine 1-phosphate (S1P). Dysregulation of the balance between sphingomyelin, ceramide, and S1P has been implicated in the regulation of liver regeneration and diseases, including liver fibrosis and hepatocellular carcinoma (HCC). Understanding and modulating this balance may have therapeutic implications for tumor proliferation, progression, and metastasis in HCC. For cancer therapy, several inhibitors and activators of sphingolipid signaling, including ABC294640, SKI-II, and FTY720, have been discussed. Here, we elucidate the critical roles of the sphingolipid pathway in the regulation of liver regeneration, fibrosis, and HCC. Regulation of sphingolipids and their corresponding enzymes may considerably influence new insights into therapies for various liver disorders and diseases.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| |
Collapse
|
6
|
Tao YP, Zhu HY, Shi QY, Wang CX, Hua YX, Hu HY, Zhou QY, Zhou ZL, Sun Y, Wang XM, Wang Y, Zhang YL, Guo YJ, Wang ZY, Che X, Xu CW, Zhang XC, Heger M, Tao SP, Zheng X, Xu Y, Ao L, Liu AJ, Liu SB, Cheng SQ, Pan WW. S1PR1 regulates ovarian cancer cell senescence through the PDK1-LATS1/2-YAP pathway. Oncogene 2023; 42:3491-3502. [PMID: 37828220 PMCID: PMC10656284 DOI: 10.1038/s41388-023-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Cell senescence deters the activation of various oncogenes. Induction of senescence is, therefore, a potentially effective strategy to interfere with vital processes in tumor cells. Sphingosine-1-phosphate receptor 1 (S1PR1) has been implicated in various cancer types, including ovarian cancer. The mechanism by which S1PR1 regulates ovarian cancer cell senescence is currently elusive. In this study, we demonstrate that S1PR1 was highly expressed in human ovarian cancer tissues and cell lines. S1PR1 deletion inhibited the proliferation and migration of ovarian cancer cells. S1PR1 deletion promoted ovarian cancer cell senescence and sensitized ovarian cancer cells to cisplatin chemotherapy. Exposure of ovarian cancer cells to sphingosine-1-phosphate (S1P) increased the expression of 3-phosphatidylinositol-dependent protein kinase 1 (PDK1), decreased the expression of large tumor suppressor 1/2 (LATS1/2), and induced phosphorylation of Yes-associated protein (p-YAP). Opposite results were obtained in S1PR1 knockout cells following pharmacological inhibition. After silencing LATS1/2 in S1PR1-deficient ovarian cancer cells, senescence was suppressed and S1PR1 expression was increased concomitantly with YAP expression. Transcriptional regulation of S1PR1 by YAP was confirmed by chromatin immunoprecipitation. Accordingly, the S1PR1-PDK1-LATS1/2-YAP pathway regulates ovarian cancer cell senescence and does so through a YAP-mediated feedback loop. S1PR1 constitutes a druggable target for the induction of senescence in ovarian cancer cells. Pharmacological intervention in the S1PR1-PDK1-LATS1/2-YAP signaling axis may augment the efficacy of standard chemotherapy.
Collapse
Affiliation(s)
- Yi-Ping Tao
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Heng-Yan Zhu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Qian-Yuan Shi
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Cai-Xia Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yu-Xin Hua
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Han-Yin Hu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Qi-Yin Zhou
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Zi-Lu Zhou
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ying Sun
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Xiao-Min Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yu Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ya-Ling Zhang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yan-Jun Guo
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Zi-Ying Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Xuan Che
- Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Chun-Wei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 Banshan East Street, Gongshu District, Hangzhou, 310022, China
| | - Xian-Chao Zhang
- Institute of Information Network and Artificial Intelligence, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Su-Ping Tao
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Xin Zheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Lei Ao
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ai-Jun Liu
- Department of Pathology, the 7th Medical Center, General Hospital of PLA, Beijing, 100700, China
| | - Sheng-Bing Liu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Wei-Wei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.
- G60 STI Valley Industry & Innovation Institute, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.
| |
Collapse
|
7
|
Guo H, Zhi Y, Wang K, Li N, Yu D, Ji Z, Chen B. Establishment of two oxaliplatin-resistant gallbladder cancer cell lines and comprehensive analysis of dysregulated genes. Open Med (Wars) 2023; 18:20230690. [PMID: 37786776 PMCID: PMC10541806 DOI: 10.1515/med-2023-0690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 10/04/2023] Open
Abstract
Acquired resistance to chemotherapeutic drugs in gallbladder cancer (GBC) results in therapy failure. This study is aimed to establish oxaliplatin (OXA)-resistant GBC cell lines and uncover their gene expression profiles. First, two OXA-resistant GBC cell lines (GBC-SD/OXA and SGC996/OXA) were established by gradually increasing the drug concentration, and the resistance index was 4-5. The two resistant cell lines showed slower proliferation and higher stemness, colony formation, and migration abilities. Epithelial mesenchymal transformation and increased levels of P-glycoprotein were also detected. Next RNA-sequence analysis identified 4,675 dysregulated genes (DGs) in resistant cells, and most of the 12 randomly selected DGs were verified to be consistent with the sequence results. Kyoto Encyclopedia of Genes and Genomes analysis indicated that several DGs were involved in resistance- and phenotype-related pathways, of which the activations of PD-L1 and ERK1/2 were both verified in resistant cell lines. In conclusion, this study is the first to report the gene expression profile of OXA-resistant GBC cells and provides a useful database for target development.
Collapse
Affiliation(s)
- Haijun Guo
- Department of Emergency Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai201318, China
| | - Yunqing Zhi
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai201204, China
| | - Kaijing Wang
- Department of Hepatobiliary Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, China
| | - Na Li
- Department of Nursing, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, China
| | - Danlei Yu
- Department of Nursing, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, China
| | - Zhonghua Ji
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai200120, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai200120, China
| |
Collapse
|
8
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
9
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
10
|
The altered lipidome of hepatocellular carcinoma. Semin Cancer Biol 2022; 86:445-456. [PMID: 35131480 DOI: 10.1016/j.semcancer.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Alterations in metabolic pathways are a hallmark of cancer. A deeper understanding of the contribution of different metabolites to carcinogenesis is thus vitally important to elucidate mechanisms of tumor initiation and progression to inform therapeutic strategies. Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide and its altered metabolic landscape is beginning to unfold with the advancement of technologies. In particular, characterization of the lipidome of human HCCs has accelerated, and together with biochemical analyses, are revealing recurrent patterns of alterations in glycerophospholipid, sphingolipid, cholesterol and bile acid metabolism. These widespread alterations encompass a myriad of lipid species with numerous roles affecting multiple hallmarks of cancer, including aberrant growth signaling, metastasis, evasion of cell death and immunosuppression. In this review, we summarize the current trends and findings of the altered lipidomic landscape of HCC and discuss their potential biological significance for hepatocarcinogenesis.
Collapse
|
11
|
Wang X, Qiu Z, Dong W, Yang Z, Wang J, Xu H, Sun T, Huang Z, Jin J. S1PR1 induces metabolic reprogramming of ceramide in vascular endothelial cells, affecting hepatocellular carcinoma angiogenesis and progression. Cell Death Dis 2022; 13:768. [PMID: 36068200 PMCID: PMC9448762 DOI: 10.1038/s41419-022-05210-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Angiogenesis is a fundamental process underlying the occurrence, growth and metastasis of hepatocellular carcinoma (HCC), a prevalent tumour type with an extremely poor prognosis due to abundant vasculature. However, the underlying mechanism of angiogenesis in HCC remains largely unknown. Herein, we found that sphingosine-1-phosphate receptor 1 (S1PR1) plays an important role in HCC angiogenesis. S1PR1 was found to be selectively and highly expressed in the blood vessels of HCC tissues compared with those of paratumour tissues. Functionally, high expression of S1PR1 in endothelial cells (ECs) promoted angiogenesis and progression of HCC in vitro and in vivo. Mechanistically, proangiogenic factors (S1P, IL-6, VEGFA) in conditioned medium from HCC cells induced the upregulation of S1PR1 in ECs via the phosphorylation of STAT3 at Y705. Further study also revealed that S1PR1 promotes angiogenesis by decreasing ceramide levels via CerS3 downregulation. Interestingly, we demonstrated that S1PR1 downregulates CerS3 by inducing CerS6 translocation into the nucleus to inhibit CerS3 at the transcriptional level in ECs. In addition, we found that a high concentration of Lenvatinib significantly downregulated the expression of S1PR1 and obviously enhanced S1PR1 knockdown-mediated angiogenesis inhibition, indicating that S1PR1 may be a target by which Lenvatinib combats angiogenesis in HCC. Thus, S1PR1 may be an important target for suppressing angiogenesis in HCC, and inhibiting S1PR1 is a promising approach to antitumor therapy in HCC.
Collapse
Affiliation(s)
- Xuehong Wang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Zhidong Qiu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
- Department of General Surgery, Yantian District People's Hospital, Shenzhen, 518081, Guangdong, China
| | - Wei Dong
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Zebin Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Junnan Wang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Hailiang Xu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Zhaoquan Huang
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, 530000, Nanning, Guangxi, China.
- Department of Pathology, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China.
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China.
- China‒USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001, Guilin, Guangxi, China.
| |
Collapse
|
12
|
Chen H, Wang J, Zhang C, Ding P, Tian S, Chen J, Ji G, Wu T. Sphingosine 1-phosphate receptor, a new therapeutic direction in different diseases. Biomed Pharmacother 2022; 153:113341. [PMID: 35785704 DOI: 10.1016/j.biopha.2022.113341] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
Sphingosine 1-phosphate receptor (S1PR), as a kind of G protein-coupled receptor, has five subtypes, including S1PR1, S1PR2, S1PR3, S1PR4, and S1PR5. Sphingosine 1-phosphate receptor (S1P) and S1PR regulate the trafficking of neutrophils and some cells, which has great effects on immune systems, lung tissue, and liver tissue. Presently, many related reports have proved that S1PR has a strong effect on the migration of lymphocytes, tumor cells, neutrophils, and many other cells via the regulation of signals, pathways, and enzymes. In this way, S1PR can regulate the relative response of the organism. Thus, S1PR has become a possible target for the treatment of autoimmune diseases, pulmonary disease, liver disease, and cancer. In this review, we mainly focus on the research of the S1PR for the new therapeutic directions of different diseases and is expected to assist support in the clinic and drug use.
Collapse
Affiliation(s)
- Hongyu Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuxia Tian
- Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Junming Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Pherez-Farah A, López-Sánchez RDC, Villela-Martínez LM, Ortiz-López R, Beltrán BE, Hernández-Hernández JA. Sphingolipids and Lymphomas: A Double-Edged Sword. Cancers (Basel) 2022; 14:2051. [PMID: 35565181 PMCID: PMC9104519 DOI: 10.3390/cancers14092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphomas are a highly heterogeneous group of hematological neoplasms. Given their ethiopathogenic complexity, their classification and management can become difficult tasks; therefore, new approaches are continuously being sought. Metabolic reprogramming at the lipid level is a hot topic in cancer research, and sphingolipidomics has gained particular focus in this area due to the bioactive nature of molecules such as sphingoid bases, sphingosine-1-phosphate, ceramides, sphingomyelin, cerebrosides, globosides, and gangliosides. Sphingolipid metabolism has become especially exciting because they are involved in virtually every cellular process through an extremely intricate metabolic web; in fact, no two sphingolipids share the same fate. Unsurprisingly, a disruption at this level is a recurrent mechanism in lymphomagenesis, dissemination, and chemoresistance, which means potential biomarkers and therapeutical targets might be hiding within these pathways. Many comprehensive reviews describing their role in cancer exist, but because most research has been conducted in solid malignancies, evidence in lymphomagenesis is somewhat limited. In this review, we summarize key aspects of sphingolipid biochemistry and discuss their known impact in cancer biology, with a particular focus on lymphomas and possible therapeutical strategies against them.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | | | - Luis Mario Villela-Martínez
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico
- Hospital Fernando Ocaranza, ISSSTE, Hermosillo 83190, Sonora, Mexico
- Centro Médico Dr. Ignacio Chávez, ISSSTESON, Hermosillo 83000, Sonora, Mexico
| | - Rocío Ortiz-López
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | - Brady E Beltrán
- Hospital Edgardo Rebagliati Martins, Lima 15072, Peru
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima 1801, Peru
| | | |
Collapse
|
14
|
Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep 2022; 4:100479. [PMID: 35469167 PMCID: PMC9034302 DOI: 10.1016/j.jhepr.2022.100479] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.
Collapse
|
15
|
Deldar Abad Paskeh M, Mirzaei S, Ashrafizadeh M, Zarrabi A, Sethi G. Wnt/β-Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. J Hepatocell Carcinoma 2021; 8:1415-1444. [PMID: 34858888 PMCID: PMC8630469 DOI: 10.2147/jhc.s336858] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Liver cancers cause a high rate of death worldwide and hepatocellular carcinoma (HCC) is considered as the most common primary liver cancer. HCC remains a challenging disease to treat. Wnt/β-catenin signaling pathway is considered a tumor-promoting factor in various cancers; hence, the present review focused on the role of Wnt signaling in HCC, and its association with progression and therapy response based on pre-clinical and clinical evidence. The nuclear translocation of β-catenin enhances expression level of genes such as c-Myc and MMPs in increasing cancer progression. The mutation of CTNNB1 gene encoding β-catenin and its overexpression can lead to HCC progression. β-catenin signaling enhances cancer stem cell features of HCC and promotes their growth rate. Furthermore, β-catenin prevents apoptosis in HCC cells and increases their migration via triggering EMT and upregulating MMP levels. It is suggested that β-catenin signaling participates in mediating drug resistance and immuno-resistance in HCC. Upstream mediators including ncRNAs can regulate β-catenin signaling in HCC. Anti-cancer agents inhibit β-catenin signaling and mediate its proteasomal degradation in HCC therapy. Furthermore, clinical studies have revealed the role of β-catenin and its gene mutation (CTNBB1) in HCC progression. Based on these subjects, future experiments can focus on developing novel therapeutics targeting Wnt/β-catenin signaling in HCC therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Chen CL, Meng E, Wu ST, Lai HF, Lu YS, Yang MH, Tsao CW, Kao CC, Chiu YL. Targeting S1PR1 May Result in Enhanced Migration of Cancer Cells in Bladder Carcinoma. Cancers (Basel) 2021; 13:cancers13174474. [PMID: 34503284 PMCID: PMC8431630 DOI: 10.3390/cancers13174474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Clinical bladder tumor histological analysis shows that high expression of S1PR1 is associated with poor patient prognosis. However, there are no studies that describe the underlying mechanism. To investigate the relative distribution and actual function of S1PR1 in bladder tumors, we analyzed multiple clinical databases in combination with tumor purity and immune cell infiltration simulations, as well as databases of well-defined histological phenotypes of bladder cancer, and single-cell sequencing of adjacent normal tissues and bladder tumors, and further compared them with bladder cancer cell lines. The results showed that S1PR1 expression was generally higher in normal tissues than in bladder cancer tissues, and its distribution was mainly in endothelial cells or immune cells. The association between high S1PR1 expression and poor prognosis may be due to tumor invasion of adjacent normal tissues, where highly expressed S1PR1 may affect prognostic interpretation. The effect of S1PR1 itself on cancer cells was associated with cell adhesion, and in bladder cancer cells, S1PR1 expression was negatively correlated with cell motility. Moreover, the use of FTY-720 will cause an increased metastatic ability of bladder cancer cells. In conclusion, we suggest that the use of S1PR1-specific inhibition as a synergistic treatment requires more observation and consideration.
Collapse
Affiliation(s)
- Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-L.C.); (E.M.); (S.-T.W.); (M.-H.Y.); (C.-W.T.); (C.-C.K.)
| | - En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-L.C.); (E.M.); (S.-T.W.); (M.-H.Y.); (C.-W.T.); (C.-C.K.)
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-L.C.); (E.M.); (S.-T.W.); (M.-H.Y.); (C.-W.T.); (C.-C.K.)
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (H.-F.L.); (Y.-S.L.)
| | - Yi-Shan Lu
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (H.-F.L.); (Y.-S.L.)
| | - Ming-Hsin Yang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-L.C.); (E.M.); (S.-T.W.); (M.-H.Y.); (C.-W.T.); (C.-C.K.)
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-L.C.); (E.M.); (S.-T.W.); (M.-H.Y.); (C.-W.T.); (C.-C.K.)
| | - Chien-Chang Kao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-L.C.); (E.M.); (S.-T.W.); (M.-H.Y.); (C.-W.T.); (C.-C.K.)
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (H.-F.L.); (Y.-S.L.)
- Correspondence: ; Tel.: +886-2-8792-3100 (ext. 18828)
| |
Collapse
|