1
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
2
|
Zhang D, Li J, Li X, Liu W, Yu Y, Sun H, Wu J, Ge Z, Lv K, Shao Y, Wang S, Ye X. Anti-osteoporosis activity of casticin in ovariectomized rats. Toxicol Res (Camb) 2024; 13:tfae064. [PMID: 38680951 PMCID: PMC11052697 DOI: 10.1093/toxres/tfae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/06/2024] [Indexed: 05/01/2024] Open
Abstract
Background Postmenopausal osteoporosis (PMPO) is the most familiar type of osteoporosis, a silent bone disease. Casticin, a natural flavonoid constituent, improves osteoporosis in animal model. Nevertheless, the potential mechanism remains to be further explored. Methods A model of PMPO was established in rats treated with ovariectomy (OVX) and RAW 264.7 cells induced with receptor activator of nuclear factor kappa-B ligand (RANKL). The effect and potential mechanism of casticin on PMPO were addressed by pathological staining, measurement of bone mineral density (BMD), three-point bending test, serum biochemical detection, filamentous-actin (F-actin) ring staining, TRAcP staining, reverse transcription quantitative polymerase chain reaction, western blot and examination of oxidative stress indicators. Results The casticin treatment increased the femoral trabecular area, bone maturity, BMD, elastic modulus, maximum load, the level of calcium and estrogen with the reduced concentrations of alkaline phosphatase (ALP) and tumor necrosis factor (TNF)-α in OVX rats. An enhancement in the F-actin ring formation, TRAcP staining and the relative mRNA expression of NFATc1 and TRAP was observed in RANKL-induced RAW 264.7 cells, which was declined by the treatment of casticin. Moreover, the casticin treatment reversed the reduced the relative protein expression of Nrf2 and HO-1 and the concentrations of superoxide dismutase and glutathione peroxidase, and the increased content of malondialdehyde both in vivo and in vitro. Conclusion Casticin improved bone density, bone biomechanics, the level of calcium and estrogen, the release of pro-inflammatory factor and oxidative stress to alleviate osteoporosis, which was associated with the upregulation of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Jianmin Li
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Xuejia Li
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Wanxin Liu
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Ying Yu
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Hao Sun
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Jiajun Wu
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Zhichao Ge
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Kai Lv
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Yanting Shao
- Laboratory Animal Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Shuqiang Wang
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Xiaojian Ye
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
- Department of Orthopedics, 2. Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai 200336, China
| |
Collapse
|
3
|
Zhang D, Li X, Li J, Liu W, Yu Y, Wang S, Ye X. Casticin promotes osteogenic differentiation of bone marrow stromal cells and improves osteoporosis in rats by regulating nuclear factor-κB/mitogen-activated protein kinase. Int J Rheum Dis 2023; 26:80-87. [PMID: 36195975 DOI: 10.1111/1756-185x.14451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Osteoporosis has influenced millions of people, especially postmenopausal women, which has become a big burden to the whole world. Although the diverse roles of casticin (CAS) on different diseases were identified, whether it was implicated with osteoporosis was unknown. METHODS A rat model of osteoporosis was established through dexamethasone (DEX) treatment and a cell model reflecting the osteogenic and osteoclast induction was constructed in bone marrow stromal cells (BMSCs). The calcification at the late stage of induction was measured via Alizarin Red S staining. Western blot was applied to evaluate the levels of proteins. RESULTS Hematoxylin and eosin staining revealed that the number of bone trabecular in DEX-induced osteoporosis rats was decreased, while increased doses of CAS treatment elevated the number of bone trabecular. CAS treatment alleviated DEX-induced osteoporosis in rats. Moreover, we found that CAS inhibited the nuclear factor-κB/mitogen-activated protein kinase (NF-κB/MAPK) pathway. In addition, CAS promoted osteogenic differentiation of BMSCs and reduced osteoclastogenesis of bone marrow monocytes. Finally, CAS was observed to retard the receptor activator of NFκ-B ligand-induced NF-κB/MAPK pathway. CONCLUSION CAS promoted osteogenic differentiation of BMSCs and improved osteoporosis in rats by regulating the NF-κB/MAPK pathway. This might shed a light into using CAS as a drug treating osteoporosis in the future.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuejia Li
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianmin Li
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanxin Liu
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Yu
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuqiang Wang
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|