Qiao Y, Chang X, Zheng J, Yi M, Chang Z, Yu MH, Bu XH. Self-Interpenetrated Water-Stable Microporous Metal-Organic Framework toward Storage and Purification of Light Hydrocarbons.
Inorg Chem 2021;
60:2749-2755. [PMID:
33535744 DOI:
10.1021/acs.inorgchem.0c03618]
[Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Storage and purification of light hydrocarbons are very meaningful for their high-purity requirements and safety utilization in the fields of industry and clean energy. It is a simple and effective way to achieve this goal utilizing the physical adsorption properties of stable porous metal-organic frameworks (MOFs). In this work, a stable self-interpenetrated three-dimensional MOF with a new 3,4-connected topology, {[Zn2(tpda)2(4,4'-bpy)]·4DMF}n (NKM-101; H2tpda = 4,4'-[4-(4H-1,2,4-triazol-4-yl)phenyl]dibenzoic acid, 4,4'-bpy = 4,4'-bipyridine, and DMF = N,N-dimethylformamide), has been successfully constructed based on a triazole-carboxyl ligand. The dense functional active sites existing on the inner walls of one-dimensional channels of NKM-101 are beneficial to enhancement of the binding affinities between the framework and specific molecules (CO2, C2-C4). Therefore, the selective adsorption and separation performance of the material on CO2/CH4 and C2-C4/CH4 are effectively improved. In addition, NKM-101 also exhibits excellent water stability, making it possible to be a practical material for the storage and purification of light hydrocarbons.
Collapse