1
|
Nosova K, Quiceno E, Hussein A, Bozinov O, Nakaji P. History of Ablation Therapies in Neurosurgery. Neurosurg Clin N Am 2023; 34:193-198. [PMID: 36906326 DOI: 10.1016/j.nec.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Laser interstitial thermal therapy (LITT) and high-intensity focused ultrasound thermal ablation are treatment options with great potential to treat glioblastoma, metastasis, epilepsy, essential tremor, and chronic pain. Results from recent studies show that LITT is a viable alternative to conventional surgical techniques in select patient populations. Although many of the bases for these treatments have existed since the 1930s, the most important advancement in these techniques has occurred in the last 15 years and the coming years hold much promise for these treatments.
Collapse
Affiliation(s)
- Kristin Nosova
- Department of Neurosurgery at Banner, University Medical Center, 755 East McDowell Road 2nd Floor, Phoenix, AZ 85006, USA
| | - Esteban Quiceno
- Department of Neurosurgery at Banner, University Medical Center, 755 East McDowell Road 2nd Floor, Phoenix, AZ 85006, USA
| | - Amna Hussein
- Department of Neurosurgery at Banner, University Medical Center, 755 East McDowell Road 2nd Floor, Phoenix, AZ 85006, USA
| | - Oliver Bozinov
- Department of Neurosurgery, Kantonsspital St. Gallen, St Gallen CH-9000, Switzerland
| | - Peter Nakaji
- Department of Neurosurgery at Banner, University Medical Center, 755 East McDowell Road 2nd Floor, Phoenix, AZ 85006, USA.
| |
Collapse
|
2
|
Baek H, Lockwood D, Mason EJ, Obusez E, Poturalski M, Rammo R, Nagel SJ, Jones SE. Clinical Intervention Using Focused Ultrasound (FUS) Stimulation of the Brain in Diverse Neurological Disorders. Front Neurol 2022; 13:880814. [PMID: 35614924 PMCID: PMC9124976 DOI: 10.3389/fneur.2022.880814] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
Various surgical techniques and pharmaceutical treatments have been developed to improve the current technologies of treating brain diseases. Focused ultrasound (FUS) is a new brain stimulation modality that can exert a therapeutic effect on diseased brain cells, with this effect ranging from permanent ablation of the pathological neural circuit to transient excitatory/inhibitory modulation of the neural activity depending on the acoustic energy of choice. With the development of intraoperative imaging technology, FUS has become a clinically available noninvasive neurosurgical option with visual feedback. Over the past 10 years, FUS has shown enormous potential. It can deliver acoustic energy through the physical barrier of the brain and eliminate abnormal brain cells to treat patients with Parkinson's disease and essential tremor. In addition, FUS can help introduce potentially beneficial therapeutics at the exact brain region where they need to be, bypassing the brain's function barrier, which can be applied for a wide range of central nervous system disorders. In this review, we introduce the current FDA-approved clinical applications of FUS, ranging from thermal ablation to blood barrier opening, as well as the emerging applications of FUS in the context of pain control, epilepsy, and neuromodulation. We also discuss the expansion of future applications and challenges. Broadening FUS technologies requires a deep understanding of the effect of ultrasound when targeting various brain structures in diverse disease conditions in the context of skull interface, anatomical structure inside the brain, and pathology.
Collapse
Affiliation(s)
- Hongchae Baek
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
- Center for Neurological Restoration, Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| | - Daniel Lockwood
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
| | | | - Emmanuel Obusez
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
| | | | - Richard Rammo
- Center for Neurological Restoration, Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| | - Sean J. Nagel
- Center for Neurological Restoration, Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| | - Stephen E. Jones
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
- *Correspondence: Stephen E. Jones
| |
Collapse
|
3
|
Sawaguchi Y, Wang Z, Yamamoto H, Nakata N. <i>In vitro</i> study about prevention of vascular reocclusion by low intensity ultrasonic irradiation. Drug Discov Ther 2022; 16:233-239. [DOI: 10.5582/ddt.2022.01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yoshikazu Sawaguchi
- Department of Medical Technology, Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Zuojun Wang
- Division of Artificial Intelligence in Medicine, the Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yamamoto
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Saitama, Japan
| | - Norio Nakata
- Division of Artificial Intelligence in Medicine, the Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Giammalva GR, Gagliardo C, Marrone S, Paolini F, Gerardi RM, Umana GE, Yağmurlu K, Chaurasia B, Scalia G, Midiri F, La Grutta L, Basile L, Gulì C, Messina D, Pino MA, Graziano F, Tumbiolo S, Iacopino DG, Maugeri R. Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives. Brain Sci 2021; 11:84. [PMID: 33435152 PMCID: PMC7827488 DOI: 10.3390/brainsci11010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Transcranial MR-guided Focused ultrasound (tcMRgFUS) is a surgical procedure that adopts focused ultrasounds beam towards a specific therapeutic target through the intact skull. The convergence of focused ultrasound beams onto the target produces tissue effects through released energy. Regarding neurosurgical applications, tcMRgFUS has been successfully adopted as a non-invasive procedure for ablative purposes such as thalamotomy, pallidotomy, and subthalamotomy for movement disorders. Several studies confirmed the effectiveness of tcMRgFUS in the treatment of several neurological conditions, ranging from motor disorders to psychiatric disorders. Moreover, using low-frequencies tcMRgFUS systems temporarily disrupts the blood-brain barrier, making this procedure suitable in neuro-oncology and neurodegenerative disease for controlled drug delivery. Nowadays, tcMRgFUS represents one of the most promising and fascinating technologies in neuroscience. Since it is an emerging technology, tcMRgFUS is still the subject of countless disparate studies, even if its effectiveness has been already proven in many experimental and therapeutic fields. Therefore, although many studies have been carried out, many others are still needed to increase the degree of knowledge of the innumerable potentials of tcMRgFUS and thus expand the future fields of application of this technology.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (C.G.); (F.M.)
| | - Salvatore Marrone
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | | | - Kaan Yağmurlu
- Departments of Neuroscience and Neurosurgery, University of Virginia Health System, Charlottesville, VA 22903, USA;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy; (G.S.); (F.G.)
| | - Federico Midiri
- Section of Radiological Sciences, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (C.G.); (F.M.)
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties-ProMISE, University of Palermo, 90127 Palermo, Italy;
| | - Luigi Basile
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Carlo Gulì
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Domenico Messina
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Maria Angela Pino
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Francesca Graziano
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy; (G.S.); (F.G.)
| | - Silvana Tumbiolo
- Division of Neurosurgery, Villa Sofia Hospital, 90146 Palermo, Italy;
| | - Domenico Gerardo Iacopino
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgery Unit, Department of Biomedicine, Neurosciences & Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (G.R.G.); (S.M.); (F.P.); (R.M.G.); (L.B.); (C.G.); (D.M.); (M.A.P.); (D.G.I.); (R.M.)
| |
Collapse
|
5
|
Melià-Sorolla M, Castaño C, DeGregorio-Rocasolano N, Rodríguez-Esparragoza L, Dávalos A, Martí-Sistac O, Gasull T. Relevance of Porcine Stroke Models to Bridge the Gap from Pre-Clinical Findings to Clinical Implementation. Int J Mol Sci 2020; 21:ijms21186568. [PMID: 32911769 PMCID: PMC7555414 DOI: 10.3390/ijms21186568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
In the search of animal stroke models providing translational advantages for biomedical research, pigs are large mammals with interesting brain characteristics and wide social acceptance. Compared to rodents, pigs have human-like highly gyrencephalic brains. In addition, increasingly through phylogeny, animals have more sophisticated white matter connectivity; thus, ratios of white-to-gray matter in humans and pigs are higher than in rodents. Swine models provide the opportunity to study the effect of stroke with emphasis on white matter damage and neuroanatomical changes in connectivity, and their pathophysiological correlate. In addition, the subarachnoid space surrounding the swine brain resembles that of humans. This allows the accumulation of blood and clots in subarachnoid hemorrhage models mimicking the clinical condition. The clot accumulation has been reported to mediate pathological mechanisms known to contribute to infarct progression and final damage in stroke patients. Importantly, swine allows trustworthy tracking of brain damage evolution using the same non-invasive multimodal imaging sequences used in the clinical practice. Moreover, several models of comorbidities and pathologies usually found in stroke patients have recently been established in swine. We review here ischemic and hemorrhagic stroke models reported so far in pigs. The advantages and limitations of each model are also discussed.
Collapse
Affiliation(s)
- Marc Melià-Sorolla
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Carlos Castaño
- Neurointerventional Radiology Unit, Department of Neurosciences, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain;
| | - Núria DeGregorio-Rocasolano
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Luis Rodríguez-Esparragoza
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Antoni Dávalos
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Octavi Martí-Sistac
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08916 Bellaterra, Catalonia, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| | - Teresa Gasull
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| |
Collapse
|
6
|
Ilyas A, Chen CJ, Ding D, Romeo A, Buell TJ, Wang TR, Kalani MYS, Park MS. Magnetic resonance-guided, high-intensity focused ultrasound sonolysis: potential applications for stroke. Neurosurg Focus 2019; 44:E12. [PMID: 29385918 DOI: 10.3171/2017.11.focus17608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stroke is one of the leading causes of death worldwide and a significant source of long-term morbidity. Unfortunately, a substantial number of stroke patients either are ineligible or do not significantly benefit from contemporary medical and interventional therapies. To address this void, investigators recently made technological advances to render transcranial MR-guided, high-intensity focused ultrasound (MRg-HIFU) sonolysis a potential therapeutic option for both acute ischemic stroke (AIS)-as an alternative for patients with emergent large-vessel occlusion (ELVO) who are ineligible for endovascular mechanical thrombectomy (EMT) or as salvage therapy for patients in whom EMT fails-and intracerebral hemorrhage (ICH)-as a neoadjuvant means of clot lysis prior to surgical evacuation. Herein, the authors review the technological principles behind MRg-HIFU sonolysis, its results in in vitro and in vivo stroke models, and its potential clinical applications. As a noninvasive transcranial technique that affords rapid clot lysis, MRg-HIFU thrombolysis may develop into a therapeutic option for patients with AIS or ICH. However, additional studies of transcranial MRg-HIFU are necessary to ascertain the merit of this treatment approach for thrombolysis in both AIS and ICH, as well as its technical limitations and risks.
Collapse
Affiliation(s)
- Adeel Ilyas
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Dale Ding
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Andrew Romeo
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Thomas J Buell
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Tony R Wang
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
7
|
Prada F, Kalani MYS, Yagmurlu K, Norat P, Del Bene M, DiMeco F, Kassell NF. Applications of Focused Ultrasound in Cerebrovascular Diseases and Brain Tumors. Neurotherapeutics 2019; 16:67-87. [PMID: 30406382 PMCID: PMC6361053 DOI: 10.1007/s13311-018-00683-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oncology and cerebrovascular disease constitute two of the most common diseases afflicting the central nervous system. Standard of treatment of these pathologies is based on multidisciplinary approaches encompassing combination of interventional procedures such as open and endovascular surgeries, drugs (chemotherapies, anti-coagulants, anti-platelet therapies, thrombolytics), and radiation therapies. In this context, therapeutic ultrasound could represent a novel diagnostic/therapeutic in the armamentarium of the surgeon to treat these diseases. Ultrasound relies on mechanical energy to induce numerous physical and biological effects. The application of this technology in neurology has been limited due to the challenges with penetrating the skull, thus limiting a prompt translation as has been seen in treating pathologies in other organs, such as breast and abdomen. Thanks to pivotal adjuncts such as multiconvergent transducers, magnetic resonance imaging (MRI) guidance, MRI thermometry, implantable transducers, and acoustic windows, focused ultrasound (FUS) is ready for prime-time applications in oncology and cerebrovascular neurology. In this review, we analyze the evolution of FUS from the beginning in 1950s to current state-of-the-art. We provide an overall picture of actual and future applications of FUS in oncology and cerebrovascular neurology reporting for each application the principal existing evidences.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA.
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA.
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Kaan Yagmurlu
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, Maryland, USA
| | - Neal F Kassell
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Jung NY, Chang JW. Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future. J Korean Med Sci 2018; 33:e279. [PMID: 30369860 PMCID: PMC6200905 DOI: 10.3346/jkms.2018.33.e279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.
Collapse
Affiliation(s)
- Na Young Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Zafar A, Quadri SA, Farooqui M, Ortega-Gutiérrez S, Hariri OR, Zulfiqar M, Ikram A, Khan MA, Suriya SS, Nunez-Gonzalez JR, Posse S, Mortazavi MM, Yonas H. MRI-Guided High-Intensity Focused Ultrasound as an Emerging Therapy for Stroke: A Review. J Neuroimaging 2018; 29:5-13. [PMID: 30295987 DOI: 10.1111/jon.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/21/2018] [Indexed: 01/23/2023] Open
Abstract
Stroke, either ischemic or hemorrhagic, accounts for significantly high morbidity and mortality rates around the globe effecting millions of lives annually. For the past few decades, ultrasound has been extensively investigated to promote clot lysis for the treatment of stroke, myocardial infarction, and acute peripheral arterial occlusions, with or without the use of tPA or contrast agents. In the age of modern minimal invasive techniques, magnetic resonance imaging-guided high-intensity focused ultrasound is a new emerging modality that seems to promise therapeutic utilities for both ischemic and hemorrhagic stroke. High-intensity focused ultrasound causes thermal heating as the tissue absorbs the mechanical energy transmitted by the ultrasonic waves leading to tissue denaturation and coagulation. Several in-vitro and in-vivo studies have demonstrated the viability of this technology for sonothrombolysis in both types of stroke and have warranted clinical trials. Apart from safety and efficacy, initiation of trials would further enable answers regarding its practical application in a clinical setup. Though this technology has been under study for treatment of various brain diseases for some decades now, relatively very few neurologists and even neurosurgeons seem to be acquainted with it. The aim of this review is to provide basic understanding of this powerful technology and discuss its clinical application and potential role as an emerging viable therapeutic option for the future management of stroke.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Neurology, University of New Mexico Hospitals, Albuquerque, NM
| | - Syed A Quadri
- Department of Neurology, University of New Mexico Hospitals, Albuquerque, NM.,California Institute of Neuroscience, Thousand Oaks, CA.,National Skull Base Center, Thousand Oaks, CA
| | - Mudassir Farooqui
- Department of Neurology, University of New Mexico Hospitals, Albuquerque, NM
| | | | - Omid R Hariri
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA
| | - Maryam Zulfiqar
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Asad Ikram
- Department of Neurology, University of New Mexico Hospitals, Albuquerque, NM
| | - Muhammad Adnan Khan
- Department of Neurology, University of New Mexico Hospitals, Albuquerque, NM.,California Institute of Neuroscience, Thousand Oaks, CA.,National Skull Base Center, Thousand Oaks, CA
| | - Sajid S Suriya
- Department of Neurology, University of New Mexico Hospitals, Albuquerque, NM.,California Institute of Neuroscience, Thousand Oaks, CA.,National Skull Base Center, Thousand Oaks, CA
| | | | - Stefan Posse
- Department of Neurology, University of New Mexico Hospitals, Albuquerque, NM
| | - Martin M Mortazavi
- California Institute of Neuroscience, Thousand Oaks, CA.,National Skull Base Center, Thousand Oaks, CA
| | - Howard Yonas
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM
| |
Collapse
|
10
|
Quadri SA, Waqas M, Khan I, Khan MA, Suriya SS, Farooqui M, Fiani B. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 2018; 44:E16. [DOI: 10.3171/2017.11.focus17610] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since Lynn and colleagues first described the use of focused ultrasound (FUS) waves for intracranial ablation in 1942, many strides have been made toward the treatment of several brain pathologies using this novel technology. In the modern era of minimal invasiveness, high-intensity focused ultrasound (HIFU) promises therapeutic utility for multiple neurosurgical applications, including treatment of tumors, stroke, epilepsy, and functional disorders. Although the use of HIFU as a potential therapeutic modality in the brain has been under study for several decades, relatively few neuroscientists, neurologists, or even neurosurgeons are familiar with it. In this extensive review, the authors intend to shed light on the current use of HIFU in different neurosurgical avenues and its mechanism of action, as well as provide an update on the outcome of various trials and advances expected from various preclinical studies in the near future. Although the initial technical challenges have been overcome and the technology has been improved, only very few clinical trials have thus far been carried out. The number of clinical trials related to neurological disorders is expected to increase in the coming years, as this novel therapeutic device appears to have a substantial expansive potential. There is great opportunity to expand the use of HIFU across various medical and surgical disciplines for the treatment of different pathologies. As this technology gains recognition, it will open the door for further research opportunities and innovation.
Collapse
Affiliation(s)
- Syed A. Quadri
- California Institute of Neuroscience, Thousand Oaks, California
| | - Muhammad Waqas
- California Institute of Neuroscience, Thousand Oaks, California
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Inamullah Khan
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Sajid S. Suriya
- California Institute of Neuroscience, Thousand Oaks, California
| | - Mudassir Farooqui
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Brian Fiani
- Department of Neurosurgery, Institute of Clinical Orthopedic and Neurosciences, Desert Regional Medical Center, Palm Springs, California
| |
Collapse
|
11
|
Lee TH, Yeh JC, Tsai CH, Yang JT, Lou SL, Seak CJ, Wang CY, Wei KC, Liu HL. Improved thrombolytic effect with focused ultrasound and neuroprotective agent against acute carotid artery thrombosis in rat. Sci Rep 2017; 7:1638. [PMID: 28487554 PMCID: PMC5431649 DOI: 10.1038/s41598-017-01769-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/30/2017] [Indexed: 01/19/2023] Open
Abstract
Combination therapy with focused ultrasound (FUS) and a neuroprotective agent, BNG-1, was examined in an acute carotid thrombotic occlusion model using LED irradiation in rat to improve the thrombolytic effect of rt-PA. Seven treatment groups included (A) intravenous bolus injection of 0.45 mg/kg rt-PA, (B) intravenous bolus injection of 0.9 mg/kg, (C) sonothrombolysis with FUS alone, (D) oral administration of 2 g/kg BNG-1 for 7 days alone, (E) A + D, (F) A + C, and (G) A + C + D. Four comparison groups were made including (H) 0.45 mg/kg rt-PA 20% bolus +80% IV fusion + FUS, (I) 0.9 mg/kg rt-PA with 10% bolus + 90% intravenous fusion, (J) B + C, (K) B + D. At 7 days after carotid occlusion, small-animal carotid ultrasound and 7 T MR angiography showed the recanalization rate of ≤50% stenosis was 50% in group B and 83% in group I, but 0% in groups A and C and 17% in group D. Combination therapy improved recanalization rate to 50–63% in groups E and F, to 67–83% in groups J and K, and to 100% in groups G and H. Our study demonstrated combination therapy with different remedies can be a feasible strategy to improve the thrombolytic effect of rt-PA.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Jih-Chao Yeh
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chih-Hung Tsai
- Departments of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, 333, Taiwan
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Chiayi, Taiwan
| | - Shyh-Liang Lou
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, Taiwan
| | - Chen-June Seak
- Department of Emergency Medicine, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Hao-Li Liu
- Departments of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, 333, Taiwan. .,Department of Neurosurgery, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| |
Collapse
|
12
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
13
|
Ghanouni P, Pauly KB, Elias WJ, Henderson J, Sheehan J, Monteith S, Wintermark M. Transcranial MRI-Guided Focused Ultrasound: A Review of the Technologic and Neurologic Applications. AJR Am J Roentgenol 2015; 205:150-9. [PMID: 26102394 PMCID: PMC4687492 DOI: 10.2214/ajr.14.13632] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This article reviews the physical principles of MRI-guided focused ultra-sound and discusses current and potential applications of this exciting technology. CONCLUSION MRI-guided focused ultrasound is a new minimally invasive method of targeted tissue thermal ablation that may be of use to treat central neuropathic pain, essential tremor, Parkinson tremor, and brain tumors. The system has also been used to temporarily disrupt the blood-brain barrier to allow targeted drug delivery to brain tumors.
Collapse
Affiliation(s)
- Pejman Ghanouni
- Stanford University, Department of Radiology, Division of Body MRI, Stanford, CA
| | - Kim Butts Pauly
- Stanford University, Departments of Radiology and Electrical Engineering and Bioengineering, Stanford, CA
| | - W. Jeff Elias
- University of Virginia, Department of Neurosurgery, Charlottesville, VA
| | - Jaimie Henderson
- Stanford University, Department of Neurosurgery and Neurology and Neurological Sciences, Stanford, CA
| | - Jason Sheehan
- University of Virginia, Department of Neurosurgery, Charlottesville, VA
| | | | - Max Wintermark
- Stanford University, Department of Radiology, Division of Neuroradiology, Stanford, CA
| |
Collapse
|
14
|
Wang TR, Dallapiazza R, Elias WJ. Neurological applications of transcranial high intensity focused ultrasound. Int J Hyperthermia 2015; 31:285-291. [PMID: 25703389 DOI: 10.3109/02656736.2015.1007398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Advances in transcranial MRI-guided focused ultrasound have renewed interest in lesioning procedures in functional neurosurgery with a potential role in the treatment of neurological conditions such as chronic pain, brain tumours, movement disorders and psychiatric diseases. While the use of transcranial MRI-guided focused ultrasound represents a new innovation in neurosurgery, ultrasound has been used in neurosurgery for almost 60 years. This paper reviews the major historical milestones that have led to modern transcranial focused ultrasound and discusses current and evolving applications of ultrasound in the brain.
Collapse
Affiliation(s)
- Tony R Wang
- Department of Neurological Surgery, University of Virginia Health Sciences Center , Charlottesville, Virginia , USA
| | | | | |
Collapse
|
15
|
Abstract
Ultrasound therapy has been investigated for over half a century. Ultrasound can act on tissue through a variety of mechanisms, including thermal, shockwave and cavitation mechanisms, and through these can elicit different responses. Ultrasound therapy can provide a non-invasive or minimally invasive treatment option, and ultrasound technology has advanced to the point where devices can be developed to investigate a wide range of applications. This review focuses on non-cancer clinical applications of therapeutic ultrasound, with an emphasis on treatments that have recently reached clinical investigations, and preclinical research programmes that have great potential to impact patient care.
Collapse
|