1
|
Yuan X, Xia Y, Jiang P, Chen J, Wang C. Neuroinflammation Targeting Pyroptosis: Molecular Mechanisms and Therapeutic Perspectives in Stroke. Mol Neurobiol 2024; 61:7448-7465. [PMID: 38383921 DOI: 10.1007/s12035-024-04050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Pyroptosis is a recently identified type of pro-inflammatory programmed cell death (PCD) mediated by inflammasomes and nucleotide oligomerization domain-like receptors (NLs) and dependent on members of the caspase family. Pyroptosis has been widely reported to participate in the occurrence and progression of various inflammatory diseases, including stroke, a frequently lethal disease with high prevalence and many complications. To date, there have been no effectively therapeutic strategies and methods for treating stroke. Pyroptosis is thought to be closely related to the occurrence and development of stroke. Understanding inflammatory responses induced by the activation of pyroptosis would be hopeful to provide feasible approaches and strategies. Targeting on molecules in the upstream or downstream of pyroptosis pathway has shown promise in the treatment of stroke. The present review summarizes current research on the characteristics of pyroptosis, the function and pathological phenomena of pyroptosis in stroke, the molecule mechanisms related to inflammatory pathways, and the drugs and other molecules that can affect outcomes after stroke. These findings may help identify possible targets or new strategies for the diagnosis and treatment of stroke.
Collapse
Affiliation(s)
- Xiwen Yuan
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China
| | - Yiwen Xia
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272011, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China.
| |
Collapse
|
2
|
Pi S, Xiong S, Yuan Y, Deng H. The Role of Inflammasome in Abdominal Aortic Aneurysm and Its Potential Drugs. Int J Mol Sci 2024; 25:5001. [PMID: 38732221 PMCID: PMC11084561 DOI: 10.3390/ijms25095001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) has been recognized as a serious chronic inflammatory degenerative aortic disease in recent years. At present, there is no other effective intervention except surgical treatment for AAA. With the aging of the human population, its incidence is increasing year by year, posing a serious threat to human health. Modern studies suggest that vascular chronic inflammatory response is the core process in AAA occurrence and development. Inflammasome, a multiprotein complex located in the cytoplasm, mediates the expression of various inflammatory cytokines like interleukin (IL)-1β and IL-18, and thus plays a pivotal role in inflammation regulation. Therefore, inflammasome may exert a crucial influence on the progression of AAA. This article reviews some mechanism studies to investigate the role of inflammasome in AAA and then summarizes several potential drugs targeting inflammasome for the treatment of AAA, aiming to provide new ideas for the clinical prevention and treatment of AAA beyond surgical methods.
Collapse
Affiliation(s)
- Suyu Pi
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Yan Yuan
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (S.X.); (Y.Y.)
- Aortic Abdominal Aneurysm (AAA) Translational Medicine Research Center of Hubei Province, Wuhan 430060, China
| |
Collapse
|
3
|
Fan H, Tian H, Jin F, Zhang X, Su S, Liu Y, Wen Z, He X, Li X, Duan C. CypD induced ROS output promotes intracranial aneurysm formation and rupture by 8-OHdG/NLRP3/MMP9 pathway. Redox Biol 2023; 67:102887. [PMID: 37717465 PMCID: PMC10514219 DOI: 10.1016/j.redox.2023.102887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Reactive Oxygen Species (ROS) are widely accepted as a pernicious factor in the progression of intracranial aneurysm (IA), which is eminently related to cell apoptosis and extracellular matrix degradation, but the mechanism remains to be elucidated. Recent evidence has identified that enhancement of Cyclophilin D (CypD) under stress conditions plays a critical role in ROS output, thus accelerating vascular destruction. However, no study has confirmed whether cypD is a detrimental mediator of cell apoptosis and extracellular matrix degradation in the setting of IA development. Our data indicated that endogenous cypD mRNA was significantly upregulated in human IA lesions and mouse IA wall, accompanied by higher level of ROS, MMPs and cell apoptosis. CypD-/- remarkably reversed vascular smooth muscle cells (VSMCs) apoptosis and elastic fiber degradation, and significantly decreased the incidence of aneurysm and ruptured aneurysm, together with the downregulation of ROS, 8-OHdG, NLRP3 and MMP9 in vivo and vitro. Furthermore, we demonstrated that blockade of cypD with CsA inhibited the above processes, thus preventing IA formation and rupture, these effects were highly dependent on ROS output. Mechanistically, we found that cypD directly interacts with ATP5B to promote ROS release in VSMCs, and 8-OHdG directly bind to NLRP3, which interacted with MMP9 to increased MMP9 level and activity in vivo and vitro. Our data expound an unexpected role of cypD in IA pathogenesis and an undescribed 8-OHdG/NLRP3/MMP9 pathway involved in accelerating VSMCs apoptosis and elastic fiber degradation. Repressing ROS output by CypD inhibition may be a promising therapeutic strategy for prevention IA development.
Collapse
Affiliation(s)
- Haiyan Fan
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Hao Tian
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Fa Jin
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xin Zhang
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shixing Su
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yanchao Liu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zhuohua Wen
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xuying He
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xifeng Li
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Chuanzhi Duan
- Department of Cerebrovascular Surgery, Neurosurgery Center, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
4
|
Yamaguchi T, Miyamoto T, Shikata E, Yamaguchi I, Shimada K, Yagi K, Tada Y, Korai M, Kitazato KT, Kanematsu Y, Takagi Y. Activation of the NLRP3/IL-1β/MMP-9 pathway and intracranial aneurysm rupture associated with the depletion of ERα and Sirt1 in oophorectomized rats. J Neurosurg 2023; 138:191-198. [PMID: 35594890 DOI: 10.3171/2022.4.jns212945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/14/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Subarachnoid hemorrhage (SAH) due to intracranial aneurysm (IA) rupture is often a devastating event. Since the incidence of SAH increases especially in menopause, it is crucial to clarify the detailed pathogenesis of these events. The activation of vascular nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes has been studied in ischemic stroke and cardiovascular disease. However, the role of NLRP3 in IA rupture still needs to be explained. The authors sought to test their hypothesis that, under estrogen-deficient conditions, activation of NLRP3 inflammasomes via downregulation of the estrogen receptor (ER) facilitates IA rupture. METHODS Ten-week-old female Sprague Dawley rats with and without oophorectomy were subjected to hemodynamic changes and hypertension (OVX+/HT and OVX-/HT, respectively) and fed a high-salt diet. Separately, using human brain endothelial cells (HBECs) and human brain smooth muscle cells (HBSMCs), the authors tested the effect of NLRP3 under estrogen-free conditions and in the presence of estradiol or of ER agonists. RESULTS In OVX+/HT rats, the frequency of IA rupture was significantly higher than in OVX-/HT rats (p = 0.03). In the left posterior cerebral artery prone to rupture in OVX+/HT rats, the levels of the mRNAs encoding ERα and Sirt1, but not of that encoding ERβ, were decreased, and the levels of the mRNAs encoding NLRP3, interleukin-1β (IL-1β), and matrix metalloproteinase 9 (MMP-9) were elevated. Immunohistochemical analysis demonstrated that the expression profiles of these proteins correlated with their mRNA levels. Treatment with an ER modulator, bazedoxifene, normalized the expression profiles of these proteins and improved SAH-free survival. In HBECs and HBSMCs under estrogen-free conditions, the depletion of ERα and Sirt1 and the accumulation of NLRP3 were counteracted by exposure to estradiol or to an ERα agonist but not to an ERβ agonist. CONCLUSIONS To the authors' knowledge, this work represents the first demonstration that, in an aneurysm model under estrogen-deficient conditions, the depletion of ERα and Sirt1 may contribute to activation of the NLRP3/IL-1β/MMP-9 pathway, facilitating the rupture of IAs in the estrogen-deficient rat IA rupture model.
Collapse
|
5
|
Huuska N, Netti E, Tulamo R, Lehti S, Jahromi BR, Kovanen PT, Niemelä M. Serum Amyloid A Is Present in Human Saccular Intracranial Aneurysm Walls and Associates With Aneurysm Rupture. J Neuropathol Exp Neurol 2021; 80:966-974. [PMID: 34534311 PMCID: PMC9278718 DOI: 10.1093/jnen/nlab086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saccular intracranial aneurysm (sIA) rupture leads to a disabling subarachnoid hemorrhage. Chronic inflammation and lipid accumulation in the sIA wall contribute to wall degenerative remodeling that precedes its rupture. A better understanding of the pathobiological process is essential for improved future treatment of patients carrying sIAs. Serum amyloid A (SAA) is an acute-phase protein produced in response to acute and chronic inflammation and tissue damage. Here, we studied the presence and the potential role of SAA in 36 intraoperatively resected sIAs (16 unruptured and 20 ruptured), that had previously been studied by histology and immunohistochemistry. SAA was present in all sIAs, but the extent of immunopositivity varied greatly. SAA immunopositivity correlated with wall degeneration (p = 0.028) and rupture (p = 0.004), with numbers of CD163-positive and CD68-positive macrophages and CD3-positive T lymphocytes (all p < 0.001), and with the expression of myeloperoxidase, matrix metalloproteinase-9, prostaglandin E-2 receptor, and cyclo-oxygenase 2 in the sIA wall. Moreover, SAA positivity correlated with the accumulation of apolipoproteins A-1 and B-100. In conclusion, SAA occurs in the sIA wall and, as an inflammation-related factor, may contribute to the development of a rupture-prone sIA.
Collapse
Affiliation(s)
- Nora Huuska
- From the Doctoral Programme in Biomedicine, Doctoral School in Health Sciences, University of Helsinki, Helsinki, Finland.,Neurosurgery Research Group, Biomedicum, Helsinki, Finland
| | - Eliisa Netti
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Riikka Tulamo
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Vascular Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Satu Lehti
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Behnam Rezai Jahromi
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Quan K, Song J, Zhu W. Response by Quan et al to Letter Regarding Article, "Validation of Wall Enhancement as a New Imaging Biomarker of Unruptured Cerebral Aneurysm". Stroke 2019; 50:e306. [PMID: 31462193 DOI: 10.1161/strokeaha.119.027038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kai Quan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Amin J, Boche D, Rakic S. What do we know about the inflammasome in humans? Brain Pathol 2018; 27:192-204. [PMID: 27997042 DOI: 10.1111/bpa.12479] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022] Open
Abstract
The inflammasome complex is part of the innate immune system, which serves to protect the host against harm from pathogens and damaged cells. It is a term first proposed by Tschopp's group in 2002, with numerous original research articles and reviews published on the topic since. There have been many types of inflammasome identified, but all result in the common pathway of activation of caspases and interleukin 1β along with possible cell death called pyroptosis. Despite a growing body of research investigating the structure and function of the inflammasome in animal models, there is still limited evidence identifying inflammasome components in human physiology and disease. In this review, we explore the molecular structure and mechanism of activation of the inflammasome with a particular focus on inflammasome complexes expressed in humans. Inflammasome components have been identified in several human peripheral and brain tissues using both in vivo and ex vivo work, and the inflammasome complex has been shown to be associated with several genetic and acquired inflammatory and neoplastic disorders. We discuss the strengths and weaknesses of the information available on the inflammasome with an emphasis on the importance of prioritizing work on human tissue. There is a huge demand for more effective treatments for a number of inflammatory and neurodegenerative diseases. Modulation of the inflammasome has been proposed as a novel treatment for several of these diseases and there are currently clinical trials ongoing to test this theory.
Collapse
Affiliation(s)
- Jay Amin
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom.,Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, SO30 3JB, United Kingdom
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Sonja Rakic
- Clinical Neurosciences, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| |
Collapse
|
8
|
Macrophage Polarization in Cerebral Aneurysm: Perspectives and Potential Targets. J Immunol Res 2017; 2017:8160589. [PMID: 29445758 PMCID: PMC5763122 DOI: 10.1155/2017/8160589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Cerebral aneurysms (CAs) have become a health burden not only because their rupture is life threatening, but for a series of devastating complications left in survivors. It is well accepted that sustained chronic inflammation plays a crucial role in the pathology of cerebral aneurysms. In particular, macrophages have been identified as critical effector cells orchestrating inflammation in CAs. In recent years, dysregulated M1/M2 polarization has been proposed to participate in the progression of CAs. Although the pathological mechanisms of M1/M2 imbalance in CAs remain largely unknown, recent advances have been made in the understanding of the molecular basis and other immune cells involving in this sophisticated network. We provide a concise overview of the mechanisms associated with macrophage plasticity and the emerging molecular targets.
Collapse
|
9
|
|
10
|
Miyamoto T, Kung DK, Kitazato KT, Yagi K, Shimada K, Tada Y, Korai M, Kurashiki Y, Kinouchi T, Kanematsu Y, Satomi J, Hashimoto T, Nagahiro S. Site-specific elevation of interleukin-1β and matrix metalloproteinase-9 in the Willis circle by hemodynamic changes is associated with rupture in a novel rat cerebral aneurysm model. J Cereb Blood Flow Metab 2017; 37:2795-2805. [PMID: 27798272 PMCID: PMC5536789 DOI: 10.1177/0271678x16675369] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathogenesis of subarachnoid hemorrhage remains unclear. No models of cerebral aneurysms elicited solely by surgical procedures and diet have been established. Elsewhere we reported that only few rats in our original rat aneurysm model manifested rupture at the anterior and posterior Willis circle and that many harbored unruptured aneurysms at the anterior cerebral artery-olfactory artery bifurcation. This suggests that rupture was site-specific. To test our hypothesis that a site-specific response to hemodynamic changes is associated with aneurysmal rupture, we modified our original aneurysm model by altering the hemodynamics. During 90-day observation, the incidence of ruptured aneurysms at the anterior and posterior Willis circle was significantly increased and the high incidence of unruptured aneurysms at the anterior cerebral artery-olfactory artery persisted. This phenomenon was associated with an increase in the blood flow volume. Notably, the level of matrix metalloproteinase-9 associated with interleukin-1β was augmented by the increase in the blood flow volume, suggesting that these molecules exacerbated the vulnerability of the aneurysmal wall. The current study first demonstrates that a site-specific increase in interleukin-1β and matrix metalloproteinase-9 elicited by hemodynamic changes is associated with rupture. Our novel rat model of rupture may help to develop pharmaceutical approaches to prevent rupture.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - David K Kung
- 2 Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Keiko T Kitazato
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Yagi
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Shimada
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshiteru Tada
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Masaaki Korai
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshitaka Kurashiki
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoya Kinouchi
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuhisa Kanematsu
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Junichiro Satomi
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoki Hashimoto
- 3 Department of Anesthesia and Perioperative Care, University of California, San Francisco, USA
| | - Shinji Nagahiro
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
11
|
Glushakova OY, Glushakov AA, Wijesinghe DS, Valadka AB, Hayes RL, Glushakov AV. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ 2017; 3:87-108. [PMID: 30276309 PMCID: PMC6126261 DOI: 10.4103/bc.bc_27_16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022] Open
Abstract
Acute brain injuries, including ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI), are major worldwide health concerns with very limited options for effective diagnosis and treatment. Stroke and TBI pose an increased risk for the development of chronic neurodegenerative diseases, notably chronic traumatic encephalopathy, Alzheimer's disease, and Parkinson's disease. The existence of premorbid neurodegenerative diseases can exacerbate the severity and prognosis of acute brain injuries. Apoptosis involving caspase-3 is one of the most common mechanisms involved in the etiopathology of both acute and chronic neurological and neurodegenerative diseases, suggesting a relationship between these disorders. Over the past two decades, several clinical biomarkers of apoptosis have been identified in cerebrospinal fluid and peripheral blood following ischemic stroke, intracerebral and subarachnoid hemorrhage, and TBI. These biomarkers include selected caspases, notably caspase-3 and its specific cleavage products such as caspase-cleaved cytokeratin-18, caspase-cleaved tau, and a caspase-specific 120 kDa αII-spectrin breakdown product. The levels of these biomarkers might be a valuable tool for the identification of pathological pathways such as apoptosis and inflammation involved in injury progression, assessment of injury severity, and prediction of clinical outcomes. This review focuses on clinical studies involving biomarkers of caspase-3-mediated pathways, following stroke and TBI. The review further examines their prospective diagnostic utility, as well as clinical utility for improved personalized treatment of stroke and TBI patients and the development of prophylactic treatment chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Andriy A Glushakov
- Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL, USA
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, Laboratory of Pharmacometabolomics and Companion Diagnostics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
- Banyan Biomarkers, Inc., Alachua, 32615, USA
| | | |
Collapse
|
12
|
Lénárt N, Brough D, Dénes Á. Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab 2016; 36:1668-1685. [PMID: 27486046 PMCID: PMC5076791 DOI: 10.1177/0271678x16662043] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
The role of inflammation in neurological disorders is increasingly recognised. Inflammatory processes are associated with the aetiology and clinical progression of migraine, psychiatric conditions, epilepsy, cerebrovascular diseases, dementia and neurodegeneration, such as seen in Alzheimer's or Parkinson's disease. Both central and systemic inflammatory actions have been linked with the development of brain diseases, suggesting that complex neuro-immune interactions could contribute to pathological changes in the brain across multiple temporal and spatial scales. However, the mechanisms through which inflammation impacts on neurological disease are improperly defined. To develop effective therapeutic approaches, it is imperative to understand how detrimental inflammatory processes could be blocked selectively, or controlled for prolonged periods, without compromising essential immune defence mechanisms. Increasing evidence indicates that common risk factors for brain disorders, such as atherosclerosis, diabetes, hypertension, obesity or infection involve the activation of NLRP3, NLRP1, NLRC4 or AIM2 inflammasomes, which are also associated with various neurological diseases. This review focuses on the mechanisms whereby inflammasomes, which integrate diverse inflammatory signals in response to pathogen-driven stimuli, tissue injury or metabolic alterations in multiple cell types and different organs of the body, could functionally link vascular- and neurological diseases and hence represent a promising therapeutic target.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - David Brough
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
13
|
Gao L, Dong Q, Song Z, Shen F, Shi J, Li Y. NLRP3 inflammasome: a promising target in ischemic stroke. Inflamm Res 2016; 66:17-24. [DOI: 10.1007/s00011-016-0981-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 01/07/2023] Open
|