1
|
Ge Q, Wang Z, Yu J, Feng X, Li J, Zhang X, Wang S, Wang L, Chen Y. Chuanxiong Rhizoma regulates ferroptosis and the immune microenvironment in ischemic stroke through the JAK-STAT3 pathway. Sci Rep 2024; 14:31224. [PMID: 39732743 DOI: 10.1038/s41598-024-82486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Ferroptosis is linked to various pathological conditions; however, the specific targets and mechanisms through which traditional Chinese medicine influences ischemic stroke (IS)-induced ferroptosis remain poorly understood. In this study, data from the Gene Expression Omnibus and disease target databases (OMIM, GeneCards, DisGeNet, TTD, and DrugBank) were integrated with ferroptosis-related gene datasets. To identify key molecular targets of Chuanxiong Rhizoma (CX), drug ingredient databases, including PubChem and TCMBank, were employed to map CX-related targets (CX-DEGs-FRG and CX-IS-FRG). Gene targets and relevant signaling pathways were analyzed using weighted gene co-expression network analysis, protein-protein interaction networks, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. The least absolute shrinkage and selection operator regression and support vector machine methods were utilized to identify intersecting genes, and the predictive accuracy of core targets was evaluated through receiver operating characteristic curve analysis. Immune cell infiltration in the IS microenvironment was assessed using CIBERSORT, followed by molecular docking of CX's active components with key targets. The JAK-STAT3 pathway was identified as a critical regulatory mechanism, and five key targets (ALOX5, PTGS2, STAT3, G6PD, and HIF1A) emerged as central to the IS-induced ferroptosis. Elevated infiltration of CD8 + T cells and neutrophils was significantly correlated with IS. Notably, the active components mandenol and myricanone demonstrated strong binding affinities with these five targets, which validated the results from network-based analysis. In conclusion, the JAK-STAT3 pathway, through its regulation of ALOX5, PTGS2, STAT3, G6PD, and HIF1A, could play a crucial role in modulating ferroptosis and immune responses in IS. These findings suggest that CX could serve as a potential therapeutic approach for IS, targeting the regulation of IS-induced ferroptosis and the immune microenvironment.
Collapse
Affiliation(s)
- Qianxi Ge
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Zhimin Wang
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, 100847, China
| | - Jiaxiang Yu
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xiuzhi Feng
- Traditional Chinese Medicine College, Liaoning University of Traditional Chinese Medicine, Shenyang, 100847, China
| | - Jiquan Li
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xiaoqing Zhang
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Shaohong Wang
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Lie Wang
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| | - Yiran Chen
- Acupuncture and Moxibustion College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| |
Collapse
|
2
|
Kumar P, Verma A, Ashique S, Bhowmick M, Mohanto S, Singh A, Gupta M, Gupta A, Haider T. Unlocking the role of herbal cosmeceutical in anti-ageing and skin ageing associated diseases. Cutan Ocul Toxicol 2024; 43:211-226. [PMID: 39024063 DOI: 10.1080/15569527.2024.2380326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The process of skin ageing is a natural biological phenomenon characterised by the emergence of wrinkles, age spots, sagging skin, and dryness over time. The increasing significance of skin in physical attractiveness has heightened skincare concerns. Anti-ageing cosmetics play a pivotal role in nurturing the skin, enhancing its quality, and promoting overall health. Today, cosmetics have evolved beyond mere aesthetics and are now integral to individual wellness. The contemporary quest for perpetual youth has intensified, prompting a deeper exploration into the skin ageing process. This comprehensive exploration delves into various elements involved in skin ageing, encompassing cells such as stem and endothelial cells, blood vessels, soft tissues, and signalling pathways. The molecular basis of skin ageing, including biochemical factors like reactive oxygen species, damaged DNA, free radicals, ions, and proteins (mRNA), is scrutinised alongside relevant animal models. The article critically analyzes the outcomes of utilising herbal components, emphasising their advantageous anti-ageing properties. The factors contributing to skin ageing, mechanistic perspectives, management approaches involving herbal cosmeceutical, and associated complications (especially cardiovascular diseases, Parkinson's, Alzheimer's, etc.) are succinctly addressed. In addition, the manuscript further summarises the recent patented innovations and toxicity of the herbal cosmeceuticals for anti-ageing and ageing associated disorders. Despite progress, further research is imperative to unlock the full potential of herbal components as anti-ageing agents.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM University Delhi-NCR Campus, Ghaziabad, UPttarpradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UPttarpradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anita Singh
- Department of Pharmaceutical Sciences, Kumaun University Campus, Bhimtal, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Gupta
- Department of Pharmacognosy and phytochemistry, Hygia Institute of Pharmaceutical Education & Research, Lucknow, Uttar Pradesh, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| |
Collapse
|
3
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
Kumar P, Verma A, Ashique S, Bhowmick M, Mohanto S, Singh A, Gupta M, Gupta A, Haider T. Unlocking the role of herbal cosmeceutical in anti-ageing and skin ageing associated diseases. Cutan Ocul Toxicol 2024; 43:211-226. [DOI: https:/doi.org/10.1080/15569527.2024.2380326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 04/05/2025]
Affiliation(s)
- Prashant Kumar
- SRM University Delhi-NCR Campus, Ghaziabad, UPttarpradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UPttarpradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anita Singh
- Department of Pharmaceutical Sciences, Kumaun University Campus, Bhimtal, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Gupta
- Department of Pharmacognosy and phytochemistry, Hygia Institute of Pharmaceutical Education & Research, Lucknow, Uttar Pradesh, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| |
Collapse
|
5
|
Jiang Y, Ma C, Guan Y, Yang W, Yu J, Shi H, Ding Z, Zhang Z. Long noncoding RNA KCNQ1OT1 aggravates cerebral infarction by regulating PTBT1/SIRT1 via miR-16-5p. J Neuropathol Exp Neurol 2024; 83:276-288. [PMID: 38324733 DOI: 10.1093/jnen/nlae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Cerebral infarction (CI) is one of the leading causes of disability and death. LncRNAs are key factors in CI progression. Herein, we studied the function of long noncoding RNA KCNQ1OT1 in CI patient plasma samples and in CI models. Quantitative real-time PCR and Western blotting tested gene and protein expressions. The interactions of KCNQ1OT1/PTBP1 and miR-16-5p were analyzed using dual-luciferase reporter and RNA immunoprecipitation assays; MTT assays measured cell viability. Cell migration and angiogenesis were tested by wound healing and tube formation assays. Pathological changes were analyzed by triphenyltetrazolium chloride and routine staining. We found that KCNQ1OT1 and PTBP1 were overexpressed and miR-16-5p was downregulated in CI patient plasma and in oxygen-glucose deprived (OGD) induced mouse brain microvascular endothelial (bEnd.3) cells. KCNQ1OT1 knockdown suppressed pro-inflammatory cytokine production and stimulated angiogenic responses in OGD-bEnd.3 cells. KCNQ1OT1 upregulated PTBP1 by sponging miR-16-5p. PTBP1 overexpression or miR-16-5p inhibition attenuated the effects of KCNQ1OT1 knockdown. PTBP1 silencing protected against OGD-bEnd.3 cell injury by enhancing SIRT1. KCNQ1OT1 silencing or miR-16-5p overexpression also alleviated ischemic injury in a mice middle cerebral artery occlusion model. Thus, KCNQ1OT1 silencing alleviates CI by regulating the miR-16-5p/PTBP1/SIRT1 pathway, providing a theoretical basis for novel therapeutic strategies targeting CI.
Collapse
Affiliation(s)
- Yuanming Jiang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chi Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuxiu Guan
- Department of Neurology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China
| | - Wenqi Yang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaqi Yu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanfei Shi
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zihang Ding
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Jin ZL, Gao WY, Guo F, Liao SJ, Hu MZ, Yu T, Yu SZ, Shi Q. Ring Finger Protein 146-mediated Long-chain Fatty-acid-Coenzyme a Ligase 4 Ubiquitination Regulates Ferroptosis-induced Neuronal Damage in Ischemic Stroke. Neuroscience 2023; 529:148-161. [PMID: 37591333 DOI: 10.1016/j.neuroscience.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Ischemic stroke (IS) is one of the leading causes of disability and death worldwide. Long-chain fatty-acid-coenzyme A ligase 4 (ACSL4) is a critical isozyme for ferroptosis that participates in the progression of IS. RING finger protein 146 (RNF146) is an E3 ligase predicted to interact with ACSL4 and regulated by activating transcription factor 3 (ATF3). The molecular mechanism of the RNF146/ACSL4 axis in IS is still unclear. Oxygen-glucose deprivation/reperfusion (OGD/R) treatment was used as the in vitro model, and middle cerebral artery occlusion (MCAO) mice were established for the in vivo model for IS. The protein level of ACSL4 was monitored by Western blot during ischemic injury. RNF146 was overexpressed in vitro and in vivo. The interaction of RNF146 and ACSL4 was determined by co-immunoprecipitation (Co-IP) assay. Chromatin immunoprecipitation (ChIP) assay and luciferase assay were utilized to determine the regulation of ATF3 on RNF146. Ferroptosis was evaluated by the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), Fe2+, and protein levels of related genes including ACSL4, SLC7A11, and GPX4. ACSL4 was downregulated upon OGD treatment and then increased by re-oxygenation. RNF146 was responsible for the ubiquitination and degradation of ACSL4 protein. RNF146 overexpression could prevent the stimulation of OGD/R-induced LDH, MDA, and Fe2+ levels and ferroptosis-related gene expression. ATF3 could activate the transcription and expression of RNF146, leading to the inhibition of OGD/R-induced neuron ferroptosis. The ATF3-mediated RNF146 could alleviate neuronal damage in IS by regulating ACSL4 ubiquitination and ferroptosis, providing a novel theoretical basis for exploring therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zheng-Long Jin
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Wen-Ying Gao
- Department of TCM Pediatrics, Jiangmen Maternal and Child Health Hospital, Jiangmen 529030, Guangdong Province, PR China
| | - Fu Guo
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Shao-Jun Liao
- Department of Spine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong Province, PR China
| | - Ming-Zhe Hu
- Department of Neurology, The Affiliated Hospital of Shandong University of TCM, Jinan 250000, Shandong Province, PR China
| | - Tao Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Shang-Zhen Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Qing Shi
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China.
| |
Collapse
|
7
|
Jia B, Li J, Song Y, Luo C. ACSL4-Mediated Ferroptosis and Its Potential Role in Central Nervous System Diseases and Injuries. Int J Mol Sci 2023; 24:10021. [PMID: 37373168 DOI: 10.3390/ijms241210021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
As an iron-dependent regulated form of cell death, ferroptosis is characterized by iron-dependent lipid peroxidation and has been implicated in the occurrence and development of various diseases, including nervous system diseases and injuries. Ferroptosis has become a potential target for intervention in these diseases or injuries in relevant preclinical models. As a member of the Acyl-CoA synthetase long-chain family (ACSLs) that can convert saturated and unsaturated fatty acids, Acyl-CoA synthetase long-chain familymember4 (ACSL4) is involved in the regulation of arachidonic acid and eicosapentaenoic acid, thus leading to ferroptosis. The underlying molecular mechanisms of ACSL4-mediated ferroptosis will promote additional treatment strategies for these diseases or injury conditions. Our review article provides a current view of ACSL4-mediated ferroptosis, mainly including the structure and function of ACSL4, as well as the role of ACSL4 in ferroptosis. We also summarize the latest research progress of ACSL4-mediated ferroptosis in central nervous system injuries and diseases, further proving that ACSL4-medicated ferroptosis is an important target for intervention in these diseases or injuries.
Collapse
Affiliation(s)
- Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Yiting Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Li C, Hu J, Xing Y, Han J, Zhang A, Zhang Y, Hua Y, Tian Z, Bai Y. Constraint-induced movement therapy alleviates motor impairment by inhibiting the accumulation of neutrophil extracellular traps in ischemic cortex. Neurobiol Dis 2023; 179:106064. [PMID: 36878327 DOI: 10.1016/j.nbd.2023.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Stroke is a major cause of mortality and morbidity and most acute strokes are ischemic. Evidence-based medicine has demonstrated the effectiveness of constraint-induced movement therapy (CIMT) in the recovery of motor function in patients after ischemic stroke, but the specific treatment mechanism remains unclear. Herein, our integrated transcriptomics and multiple enrichment analysis studies, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) studies show that CIMT conduction broadly curtails immune response, neutrophil chemotaxis, and chemokine-mediated signaling pathway, CCR chemokine receptor binding. Those suggest the potential effect of CIMT on neutrophils in ischemic mice brain parenchyma. Recent studies have found that accumulating granulocytes release extracellular web-like structures composed of DNA and proteins called neutrophil extracellular traps (NETs), which destruct neurological function primarily by disrupting the blood-brain barrier and promoting thrombosis. However, the temporal and spatial distribution of neutrophils and their released NETs in parenchyma and their damaging effects on nerve cells remain unclear. Thus, utilizing immunofluorescence and flow cytometry, our analyses uncovered that NETs erode multiple regions such as primary motor cortex (M1), striatum (Str), nucleus of the vertical limb of the diagonal band (VDB), nucleus of the horizontal limb of the diagonal band (HDB) and medial septal nucleus (MS), and persist in the brain parenchyma for at least 14 days, while CIMT can reduce the content of NETs and chemokines CCL2 and CCL5 in M1. Intriguingly, CIMT failed to further reduce neurological deficits after inhibiting the NET formation by pharmacologic inhibition of peptidylarginine deiminase 4 (PAD4). Collectively, these results demonstrate that CIMT could alleviate cerebral ischemic injury induced locomotor deficits by modulating the activation of neutrophils. These data are expected to provide direct evidence for the expression of NETs in ischemic brain parenchyma and novel insights into the mechanisms of CIMT protecting against ischemic brain injury.
Collapse
Affiliation(s)
- Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhanzhuang Tian
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Isosteviol attenuates DSS-induced colitis by maintaining intestinal barrier function through PDK1/AKT/NF-κB signaling pathway. Int Immunopharmacol 2023; 114:109532. [PMID: 36508925 DOI: 10.1016/j.intimp.2022.109532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic debilitating inflammatory disorders of the gastrointestinal tract that is characterized by intestinal epithelial barrier dysfunction and excessive activation of the mucosal immune system. Isosteviol (IS) has been reported to possess anti-inflammatory properties. In this study, we aimed to investigate effects and mechanisms of IS against intestinal inflammation. C57BL/6 mice were randomly divided into Sham, IS, dextran sodium sulfate (DSS), and DSS + IS groups. In vivo colitis model was established using 3.0 % DSS. In vitro, tumor necrosis factor-α (TNF-α)-treated Caco-2 cells were used as an inflammatory model. Clinical characteristics, histological performance, proinflammatory cytokine expression, and intestinal barrier function were measured. In addition, activation of the pyruvate dehydrogenase kinase 1/protein kinase B/nuclear factor-κB (PDK1/AKT/NF-κB) signaling pathway was determined by western blotting and quantitative polymerase chain reaction. The results showed that IS mitigated DSS-induced colitis by reducing body weight loss, colonic shortening, and disease activity index score, and by inhibiting expressions of proinflammatory cytokines IL-1β, IL-6, and TNF-α. IS restored impaired barrier function by regulating tight junctions and intestinal epithelial permeability. Furthermore, we found that IS ameliorated intestinal barrier injury by regulating PDK1/AKT/NF-κB signaling pathway. In conclusion, our results demonstrate that IS attenuates experimental colitis by preserving intestinal barrier function, probably mediated by PDK1/AKT/NF-κB signaling pathway. These findings highlight the potential of IS as a therapeutic agent for IBD.
Collapse
|
10
|
Isosteviol Sodium (STVNA) Reduces Pro-Inflammatory Cytokine IL-6 and GM-CSF in an In Vitro Murine Stroke Model of the Blood–Brain Barrier (BBB). Pharmaceutics 2022; 14:pharmaceutics14091753. [PMID: 36145501 PMCID: PMC9505783 DOI: 10.3390/pharmaceutics14091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood–brain barrier (BBB) dysfunction.
Collapse
|
11
|
The Role of Concomitant Nrf2 Targeting and Stem Cell Therapy in Cerebrovascular Disease. Antioxidants (Basel) 2022; 11:antiox11081447. [PMID: 35892653 PMCID: PMC9332234 DOI: 10.3390/antiox11081447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the reality that a death from cerebrovascular accident occurs every 3.5 min in the United States, there are few therapeutic options which are typically limited to a narrow window of opportunity in time for damage mitigation and recovery. Novel therapies have targeted pathological processes secondary to the initial insult, such as oxidative damage and peripheral inflammation. One of the greatest challenges to therapy is the frequently permanent damage within the CNS, attributed to a lack of sufficient neurogenesis. Thus, recent use of cell-based therapies for stroke have shown promising results. Unfortunately, stroke-induced inflammatory and oxidative damage limit the therapeutic potential of these stem cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in endogenous antioxidant and anti-inflammatory activity, thus presenting an attractive target for novel therapeutics to enhance stem cell therapy and promote neurogenesis. This review assesses the current literature on the concomitant use of stem cell therapy and Nrf2 targeting via pharmaceutical and natural agents, highlighting the need to elucidate both upstream and downstream pathways in optimizing Nrf2 treatments in the setting of cerebrovascular disease.
Collapse
|
12
|
Mei Y, Hu H, Deng L, Sun X, Tan W. Isosteviol sodium attenuates high fat/high cholesterol-induced myocardial dysfunction by regulating the Sirt1/AMPK pathway. Biochem Biophys Res Commun 2022; 621:80-87. [PMID: 35810595 DOI: 10.1016/j.bbrc.2022.06.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
A fat-rich diet triggers obesity, and promotes cardiomyocyte injury. Till now, no prior investigations suggested a beneficial role of Isosteviol Sodium (STVNa) in cardiac activity in high fat diet (HFD)-exposed obese rats. However, there is evidence that STVNa accelerates healing of multiple tissue injuries. Herein, we explored the underlying mechanism behind the STVNa-based protection against HFD-induced myocardial dysfunction (MCD) in a rat model of myocardial injury. We employed dosages of 1, 10, and 20 mg/kg STVNa to treat MCD in rats fed with a HFD. Based on our results, STVNa repressed MCD (as indicated by ecocardiographic analysis), myocardium function, pathological structure, and myocardial enzymes. Mechanistically, the STVNa-mediated protection against HFD-induced MCD involved inhibition of inflammation and oxidative stress. Furthermore, using Western blot analysis, we revealed that the critical members of the Sirt1/AMPK network were markedly activated in the STVNa-treated group, relative to HFD-fed controls. Collectively, these evidences suggested that the STVNa offered strong protection against HFD-induced MCD. Moreover, this effect was mediated by the activation of the Sirt1/AMPK network, which, in turn, promoted lipid metabolism.
Collapse
Affiliation(s)
- Ying Mei
- School of Pharmacy, Jinan University, Guangzhou, 510632, China; YZ Health-tech Inc, Hengqin District, Zhuhai, 519000, China
| | - Hui Hu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liangjun Deng
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wen Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500, Malaysia.
| |
Collapse
|
13
|
Zhang H, Liu Y, Li M, Peng G, Zhu T, Sun X. The Long Non-coding RNA SNHG12 Functions as a Competing Endogenous RNA to Modulate the Progression of Cerebral Ischemia/Reperfusion Injury. Mol Neurobiol 2022; 59:1073-1087. [PMID: 34839459 DOI: 10.1007/s12035-021-02648-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023]
Abstract
Increasing research has proved that long non-coding RNAs (lncRNAs) play a critical role in a variety of biological processes. However, their functions in cerebral ischemia are still unclear. We found that the small nucleolar RNA host gene 12 (SNHG12) is a new type of lncRNA induced by ischemia/reperfusion. Here, we show that the expression of SNHG12 was upregulated in the brain tissue of mice exposed to middle cerebral artery occlusion/reperfusion (MCAO/R) and primary mouse cerebral cortex neurons treated with oxygen-glucose deprivation/reoxygenation (OGD/R). Mechanistically, SNHG12 knockdown resulted in larger infarct sizes and worse neurological scores in MCAO/R mice. Consistent with the in vivo results, SNHG12 upregulation significantly increased the viability and prevented apoptosis of neurons cultured under OGD/R conditions. In addition, we found that SNHG12 acts as a competing endogenous RNA (ceRNA) with microRNA (miR)-136-5p, thereby regulating the inhibition of its endogenous target Bcl-2. Moreover, SNHG12 was proven to target miR-136-5p, increasing Bcl-2 expression, which finally led to the activation of PI3K/AKT signaling. In conclusion, we demonstrated that SNHG12 acts as a ceRNA of miR-136-5p, thereby targets and regulates the expression of Bcl-2, which attenuates cerebral ischemia/reperfusion injury via activation of the PI3K/AKT pathway. This knowledge helps to better understand the pathophysiology of cerebral ischemic stroke and may provide new treatment options for this disease.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Liu
- Department of Pharmacy, The Third People's Hospital of Kunming, Kunming, 650000, China
| | - Meng Li
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Gongfeng Peng
- Department of Pharmacy, The Third People's Hospital of Kunming, Kunming, 650000, China
| | - Tao Zhu
- School of Life Science and Bioengineering, Henan University of Urban Construction, Pingdingshan, 467000, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
14
|
WANG FD, LI J, ZHAI X, CHEN R, WANG F. Methane-rich saline restores brain SOD activity and alleviates cognitive impairment in rats with traumatic brain injury. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.54921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Jie LI
- Xi'an Jiaotong University, China
| | - Xu ZHAI
- Xi'an Jiaotong University, China
| | - Rui CHEN
- Xi'an Jiaotong University, China
| | | |
Collapse
|
15
|
Abstract
Cerebral ischemic injury may lead to a series of serious brain diseases, death or different degrees of disability. Hypoxia-inducible factor-1α (HIF-1α) is an oxygen-sensitive transcription factor, which mediates the adaptive metabolic response to hypoxia and serves a key role in cerebral ischemia. HIF-1α is the main molecule that responds to hypoxia. HIF-1α serves an important role in the development of cerebral ischemia by participating in numerous processes, including metabolism, proliferation and angiogenesis. The present review focuses on the endogenous protective mechanism of cerebral ischemia and elaborates on the role of HIF-1α in cerebral ischemia. In addition, it focuses on cerebral ischemia interventions that act on the HIF-1α target, including biological factors, non-coding RNA, hypoxic-ischemic preconditioning and drugs, and expands upon the measures to strengthen the endogenous compensatory response to support HIF-1α as a therapeutic target, thus providing novel suggestions for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Qingna Li
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Hua Han
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
16
|
Neutrophil Extracellular Traps Exacerbate Ischemic Brain Damage. Mol Neurobiol 2021; 59:643-656. [PMID: 34748205 DOI: 10.1007/s12035-021-02635-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Most acute strokes are ischemic, and subsequent neuroinflammation promotes further damage leading to cell death but also plays a beneficial role by promoting cellular repair. Neutrophils are forerunners to brain lesions after ischemic stroke and exert elaborate functions. While neutrophil extracellular traps (NETs) possess a fundamental antimicrobial function within the innate immune system under physiological circumstances, increasing evidence indicates that NETosis, the release process of NETs, occurs in the pathogenic process of stroke. In this review, we focus on the processes of NET formation and clearance, the temporal and spatial alterations of neutrophils and NETs after ischemic damage, and how NETs are involved in several stroke-related phenomena. Generally, NET formation and release processes depend on the generation of reactive oxygen species (ROS) and the activation of nuclear peptidylarginine deiminase-4 (PAD4). The acid-base environment, oxygen concentration, and iron ions around the infarct may also impact NET formation. DNase 1 has been identified as the primary degrader of NETs in serum, while reactive microglia are expected to inhibit the formation of NETs around ischemic lesions by phagocytosis of neutrophils. The neutrophils and NETs are present in the perivascular space ipsilateral to the infarct arising after ischemic damage, peaking between 1 and 3 days postischemia, but their location in the brain parenchyma remains controversial. After the ischemic injury, NETs are involved in the destruction of neurological function primarily by disrupting the blood-brain barrier and promoting thrombosis. The potential effects of NETs on various ischemic nerve cells need to be further investigated, especially in the chronic ischemic phase.
Collapse
|
17
|
Shi Y, Jin Y, Li X, Chen C, Zhang Z, Liu X, Deng Y, Fan X, Wang C. C5aR1 Mediates the Progression of Inflammatory Responses in the Brain of Rats in the Early Stage after Ischemia and Reperfusion. ACS Chem Neurosci 2021; 12:3994-4006. [PMID: 34637270 DOI: 10.1021/acschemneuro.1c00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C5a receptor 1 (C5aR1) can induce a strong inflammatory response to an injury. Targeting C5aR1 has emerged as a novel anti-inflammatory therapeutic method. However, the role of C5aR1 in cerebral ischemia and reperfusion (I/R) injury and the definitive mechanism have not been elucidated clearly. Here, we determined whether C5aR1 signaling was essential to the post-ischemic inflammation and brain injury and whether it is a valid target for therapeutic blockade by using soluble receptor antagonist PMX53 in the early stage after I/R injury. In an in vitro model (oxygen and glucose deprivation and reperfusion, OGD/R) and in vivo model (middle cerebral artery occlusion and reperfusion, MCAO/R) of I/R, the neuronal cells of rats showed significantly up-regulated gene expression of C5aR1, and a notable inflammatory response was demonstrated with elevated tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. Inhibition of C5aR1 by PMX53 treatment significantly reduced cell injury and inflammation and promoted brain function recovery. Further mechanism studies showed that inhibiting C5aR1 by PMX53 protected the rats from MCAO/R injury, decreased cell inflammation, and apoptosis via inhibiting the TLR4 and NF-κB signaling pathway and reducing the production of TNF-α, IL-1β, and IL-6 in MCAO/R rats. In addition, manipulation of the C5aR1 gene expression in vitro displayed that the inflammatory cascade signals including TLR4, TNF-α, IL-1β, and IL-6 were coincidently regulated with the regulation of C5aR1 expression levels. Thus, our results demonstrated a pathogenic role for C5aR1 in the progression of brain injury and inflammation response following I/R injury. Our study clearly demonstrated that C5aR1 inhibition might be an effective treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Xing Li
- Department of ICU, No. 1 People’s Hospital of Yancheng City, The Fourth Affiliated Hospital of Nantong University, Yancheng 224000, Jiangsu, China
| | - Chen Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Zhihong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Yijun Deng
- Department of ICU, No. 1 People’s Hospital of Yancheng City, The Fourth Affiliated Hospital of Nantong University, Yancheng 224000, Jiangsu, China
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
18
|
Wang S, Tan KS, Beng H, Liu F, Huang J, Kuai Y, Zhang R, Tan W. Protective effect of isosteviol sodium against LPS-induced multiple organ injury by regulating of glycerophospholipid metabolism and reducing macrophage-driven inflammation. Pharmacol Res 2021; 172:105781. [PMID: 34302975 DOI: 10.1016/j.phrs.2021.105781] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022]
Abstract
Sepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and antiapoptotic activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, reduced the production of inflammatory cytokines and decreased macrophage infiltration. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.
Collapse
Affiliation(s)
- Shanping Wang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Keai Sinn Tan
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Post-Doctoral Innovation Site, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, Zhuhai, Guangdong 51900, China.
| | - Huimin Beng
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Fei Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiandong Huang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yihe Kuai
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Rui Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wen Tan
- Post-Doctoral Innovation Site, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, Zhuhai, Guangdong 51900, China; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
19
|
Long Non-coding RNA PVT1 Inhibits miR-30c-5p to Upregulate Rock2 to Modulate Cerebral Ischemia/Reperfusion Injury Through MAPK Signaling Pathway Activation. Mol Neurobiol 2021; 58:6032-6048. [PMID: 34436749 DOI: 10.1007/s12035-021-02539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) play a key role in a variety of disease processes. Plasmacytoma variant translocation 1 (PVT1), a lncRNA, is known to regulate cell functions and play a key role in the pathogenesis of many malignant tumors. The function and molecular mechanisms of lncRNA-PVT1 in cerebral ischemia remain unknown. Real-time PCR (qRT-PCR) was used to detect lncRNA-PVT1 and microRNA-30c-5p (miR-30c-5p) expression in the brain tissues of mice underwent middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reperfusion (OGD/R)-treated mouse primary brain neurons. Gain- or loss-of-function approaches were used to manipulate PVT1, miR-30c-5p, and Rho-associated protein kinase 2 (Rock2). The mechanism of PVT1 in ischemic stroke was evaluated both in vivo and in vitro via bioinformatics analysis, CCK-8, flow cytometry, TUNEL staining, luciferase activity assay, RNA FISH, and Western blot. PVT1 was upregulated in the brain tissues of mice treated with MCAO/R and primary cerebral cortex neurons of mice treated with OGD/R. Mechanistically, PVT1 knockdown resulted in a lower infarct volume and ameliorated neurobehavior in MCAO mice. Consistent with in vivo results, PVT1 upregulation significantly decreased the viability and induced apoptosis of neurons cultured in OGD/R. Moreover, we demonstrated that PVT1 acts as a competitive endogenous RNA (ceRNA) that competes with miR-30c-5p, thereby negatively regulating its endogenous target Rock2. Overexpression of miR-30c-5p significantly promoted cell proliferation and inhibited apoptosis. Meanwhile, PVT1 was confirmed to target miR-30c-5p, thus activating Rock2 expression, which finally led to the activation of MAPK signaling. We demonstrated that PVT1, as a ceRNA of miR-30c-5p, could target and regulate the level of Rock2, which aggravates cerebral I/R injury via activation of the MAPK pathway. These findings reveal a new function of PVT1, which helps to broadly understand cerebral ischemic stroke and provide a new treatment strategy for this disease.
Collapse
|
20
|
Mei Y, Kuai Y, Hu H, Liu F, Liu B, Sun X, Tan W. Isosteviol Sodium Attenuates High Fat/High Cholesterol-Induced Kidney Dysfunction by Inhibiting Inflammation, Oxidative Stress and Apoptosis. Biol Pharm Bull 2021; 43:1172-1178. [PMID: 32741937 DOI: 10.1248/bpb.b19-01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sodium salt of isosteviol (STVNa) is a beyerane diterpene synthesized through acid hydrolysis of stevioside. STVNa improves multiple types of tissue injuries. However, it is not known how isosteviol sodium affects high-fat and high cholesterol diet (HFD)-induced kidney. Therefore, in this study we examined the potential molecular mechanism underlying STVNa mediated protective effect against high fat/high cholesterol-induced kidney dysfunction in HFD-induced kidney injury. Sprague-Dawley (SD) rats were allocated into six groups: the normal group, HFD group and HFD treated with three doses of STVNa, fenofibrate treatment group. The results indicated that HFD induced kidney injury evident by a 60% increase in serum creatinine (CRE) leves. In addition, there was a significant accumulation of triglycerides (approx. 60%), fatty acids (approx. 50%) and total cholesterol (approx. 2.5 fold) in the kidneys. STVNa inhibited HFD-induced kidney injury evident by reducing the increased levels of serum CRE. Specifically, STVNa attenuated HFD-induced kidney injury by inhibiting inflammation, oxidative stress, and apoptosis. These findings indicate that STVNa has a therapeutic potential for HFD-induced kidney dysfunction. The mechanisms of this pharmacological effect are through the inhibition of inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Ying Mei
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology
| | - Yihe Kuai
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology
| | - Hui Hu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology
| | - Fei Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology
| | - Bo Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology
| |
Collapse
|
21
|
Abdul KSM, Faiz N, Jovanović A, Tan W. Isosteviol Protects H9c2 Cells Against Hypoxia-reoxygenation by Activating ERK1/2. Cardiovasc Hematol Disord Drug Targets 2021; 21:73-77. [PMID: 33593268 DOI: 10.2174/1871529x21666210216122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
AIMS In the present study, we have investigated the cardioprotective properties of Isosteviol (STV) under conditions of hypoxia-reoxygenation and elucidated the underlying mechanism. BACKGROUND In our previous studies, we have determined that STV exhibits neuro- and cardio-protective properties. However, the mechanism underlying STV-induced cardioprotection has not yet been fully understood. METHODS All experiments were performed on rat heart embryonic H9c2 cell line. To induce hypoxia- reoxygenation, cells were exposed to 1% oxygen (in no glucose and no sodium pyruvate DMEM) following by reoxygenation (using fully supplemented MEM). Cells viability was tested by MTT assay, and protein levels were compared by Western blotting. RESULTS Treatment of heart embryonic H9c2 cells with STV (10 μM) significantly increased the survival of cells exposed to hypoxia-reoxygenation. STV (10 μM) activated ERK1/2 and DRP1 in hypoxia-reoxygenation, but did not have any effects on ERK1/2 or DRP1 in normoxia. STV (10 μM) did not regulate CAMKII, AKT or AMPK signaling pathways. CONCLUSION Taken all together, our findings demonstrate that 1) STV protects H9c2 cells against hypoxia-reoxygenation and that 2) this effect is mediated via ERK1/2. The property of STV that selectively activates ERK1/2 in cells exposed to stress, but not in cells under non-stress conditions, makes this compound a promising candidate-drug for therapy against myocardial ischemia-reperfusion in clinical practice.
Collapse
Affiliation(s)
- Khaja S M Abdul
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Neha Faiz
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia CY-1700, Cyprus
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
22
|
Shi Y, Chen X, Liu J, Fan X, Jin Y, Gu J, Liang J, Liang X, Wang C. Isoquercetin Improves Inflammatory Response in Rats Following Ischemic Stroke. Front Neurosci 2021; 15:555543. [PMID: 33633530 PMCID: PMC7900503 DOI: 10.3389/fnins.2021.555543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Inflammatory response contributes to brain injury after ischemia and reperfusion (I/R). Our previous literature has shown isoquercetin plays an important role in protecting against cerebral I/R injury. The present study was conducted to further investigate the effect of isoquercetin on inflammation-induced neuronal injury in I/R rats with the involvement of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and inhibitor of NF-κB (I-κB)/nuclear factor-kappa B (NF-κB) signaling pathway mediated by Toll-like receptor 4 (TLR4) and C5a receptor 1 (C5aR1). In vivo middle cerebral artery occlusion and reperfusion (MCAO/R) rat model and in vitro oxygen-glucose deprivation and reperfusion (OGD/R) neuron model were used. MCAO/R induced neurological deficits, cell apoptosis, and release of cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in ischemic brain in rats. Simultaneously, the expression of TLR4 and C5aR1 was significantly up-regulated in both MCAO/R rats and OGD/R neurons, accompanied with the inhibition of cAMP/PKA signaling and activation of I-κB/NF-κB signaling in the cortex of MCAO/R rats. Over-expression of C5aR1 in neurons induced decrease of cell viability, exerting similar effects with OGD/R injury. Isoquercetin acted as a neuroprotective agent against I/R brain injury to suppress inflammatory response and improve cell recovery by inhibiting TLR4 and C5aR1 expression, promoting cAMP/PKA activation, and inhibiting I-κB/NF-κB activation and Caspase 3 expression. TLR4 and C5aR1 contributed to inflammation and apoptosis via activating cAMP/PKA/I-κB/NF-κB signaling during cerebral I/R, suggesting that this signaling pathway may be a potent therapeutic target in ischemic stroke. Isoquercetin was identified as a neuroprotective agent, which maybe a promising therapeutic agent used for the treatment of ischemic stroke and related diseases.
Collapse
Affiliation(s)
- Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xinyi Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiaxing Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jingxiao Gu
- Medical School, Nantong University, Nantong, China
| | - Jiale Liang
- Medical School, Nantong University, Nantong, China
| | - Xinmiao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
23
|
Lian L, Zhang Y, Liu L, Yang L, Cai Y, Zhang J, Xu S. Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia. Front Mol Neurosci 2021; 13:612439. [PMID: 33488360 PMCID: PMC7817943 DOI: 10.3389/fnmol.2020.612439] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is one of the most common causes of death and disability worldwide. Neuroinflammation is a major pathological event involved in the process of ischemic injury and repair. In particular, microglia play a dual role in neuroinflammation. During the acute phase of stroke onset, M2 microglia are the dominant phenotype and exert protective effects on neuronal cells, whereas permanent M1 microglia contribute to prolonged inflammation and are detrimental to brain tissue. Emerging evidence indicates that microRNAs (miRNAs) may have regulatory effects on microglia-associated inflammation. Thus, we briefly reviewed the dynamic response of microglia after a stroke and assessed how specific miRNAs affect the behavior of reactive microglia. We concluded that miRNAs may be useful novel therapeutic targets to improve stroke outcomes and modulate neuroinflammation.
Collapse
Affiliation(s)
- Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Liu
- Binhai New Area Hospital of TCM. Tian Jin, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liji Yang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
24
|
Zhang H, Liu B, Shi X, Sun X. Long noncoding RNAs: Potential therapeutic targets in cardiocerebrovascular diseases. Pharmacol Ther 2020; 221:107744. [PMID: 33181193 DOI: 10.1016/j.pharmthera.2020.107744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Cardiocerebrovascular disease is a collective term for cardiovascular and cerebrovascular diseases. Because of the complex mechanisms involved in cardiocerebrovascular diseases, limited effective treatments have been developed. With advancements in precision medicine, studies have focused on long noncoding RNAs (lncRNAs) in cerebrovascular diseases. LncRNAs, which are over 200 nucleotides long, regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs play pivotal roles in the progression of cardiocerebrovascular diseases. For example, recent studies suggested that abnormal expression of lncRNAs are closely related to the occurrence and progression of these diseases. LncRNAs regulate gene expression by specifically binding to mRNA to modulate disease progression, serving as biomarkers for the diagnosis and prognosis of cardiocerebrovascular diseases. In this review, we discuss the roles, mechanisms, and clinical value of lncRNAs in cardiocerebrovascular diseases, providing a new perspective for the diagnosis and treatment of the diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Bo Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
25
|
Rösing N, Salvador E, Güntzel P, Kempe C, Burek M, Holzgrabe U, Soukhoroukov V, Wunder C, Förster C. Neuroprotective Effects of Isosteviol Sodium in Murine Brain Capillary Cerebellar Endothelial Cells (cerebEND) After Hypoxia. Front Cell Neurosci 2020; 14:573950. [PMID: 33192319 PMCID: PMC7655651 DOI: 10.3389/fncel.2020.573950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death worldwide. It damages neurons and other supporting cellular elements in the brain. However, the impairment is not only confined to the region of assault but the surrounding area as well. Besides, it also brings about damage to the blood-brain barrier (BBB) which in turn leads to microvascular failure and edema. Hence, this necessitates an on-going, continuous search for intervention strategies and effective treatment. Of late, the natural sweetener stevioside proved to exhibit neuroprotective effects and therapeutic benefits against cerebral ischemia-induced injury. Its injectable formulation, isosteviol sodium (STVNA) also demonstrated favorable results. Nonetheless, its effects on the BBB have not yet been investigated to date. As such, this present study was designed to assess the effects of STVNA in our in vitro stroke model of the BBB.The integrity and permeability of the BBB are governed and maintained by tight junction proteins (TJPs) such as claudin-5 and occludin. Our data show increased claudin-5 and occludin expression in oxygen and glucose (OGD)-deprived murine brain capillary cerebellar endothelial cells (cerebEND) after STVNa treatment. Likewise, the upregulation of the transmembrane protein integrin-αv was also observed. Finally, cell volume was reduced with the simultaneous administration of STVNA and OGD in cerebEND cells. In neuropathologies such as stroke, the failure of cell volume control is a major feature leading to loss of cells in the penumbra as well as adverse outcomes. Our initial findings, therefore, point to the neuroprotective effects of STVNA at the BBB in vitro, which warrant further investigation for a possible future clinical intervention.
Collapse
Affiliation(s)
- Nils Rösing
- Department of Anesthesia and Critical Care, Division Molecular Medicine, University of Würzburg, Würzburg, Germany
| | - Ellaine Salvador
- Department of Anesthesia and Critical Care, Division Molecular Medicine, University of Würzburg, Würzburg, Germany.,Tumor Biology Laboratory, Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Paul Güntzel
- Institute of Pharmacy and Food Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christoph Kempe
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anesthesia and Critical Care, Division Molecular Medicine, University of Würzburg, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Vladimir Soukhoroukov
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Wunder
- Department of Anesthesia and Intensive Care Medicine, Robert-Bosch Hospital, Stuttgart, Germany
| | - Carola Förster
- Department of Anesthesia and Critical Care, Division Molecular Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Lu MY, Wu JR, Liang RB, Wang YP, Zhu YC, Ma ZT, Zhang H, Zan J, Tan W. Upregulation of miR-219a-5p Decreases Cerebral Ischemia/Reperfusion Injury In Vitro by Targeting Pde4d. J Stroke Cerebrovasc Dis 2020; 29:104801. [PMID: 32249206 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ischemic stroke is the leading cause of disability and death globally. Micro-RNAs (miRNAs) have been reported to play important roles in the development and pathogenesis of the nervous system. However, the exact function and mechanism of miRNAs have not been fully elucidated about brain damage caused by cerebral ischemia/reperfusion (I/R). METHODS In this study, we explored the neuroprotective effects of miR-219a-5p on brain using an in vitro ischemia model (mouse neuroblastoma N2a cells treated with oxyglucose deprivation and reperfusion), and in vivo cerebral I/R model in mice. Western blot assay and Reverse Transcription-Polymerase Chain Reaction were used to check the expression of molecules involved. Flow cytometry and cholecystokinin were used to examine cell apoptosis, respectively. RESULTS Our research shows that miR-219a-5p gradually decreases in cerebral I/R models in vivo and in vitro. In vitro I/R, we find that miR-219a-5p mimics provided evidently protection for cerebral I/R damage, as shown by increased cell viability and decreased the release of LDH and cell apoptosis. Mechanically, our findings indicate that miR-219a-5p binds to cAMP specific 3', 5'-cyclic phosphodiesterase 4D (PDE4D) mRNA in the 3'-UTR region, which subsequently leads to a decrease in Pde4d expression in I/R N2a cells. CONCLUSIONS Our results provide new ideas for the study of the mechanism of cerebral ischemia/reperfusion injury, and lay the foundation for further research on the treatment of brain I/R injury. Upregulation of miR-219a-5p decreases cerebral ischemia/reperfusion injury by targeting Pde4d in vitro.
Collapse
Affiliation(s)
- Min-Yi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jin-Rong Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Rui-Bing Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yu-Peng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - You-Cai Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zi-Ting Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Hao Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Wen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
27
|
Metformin Protects against Oxidative Stress Injury Induced by Ischemia/Reperfusion via Regulation of the lncRNA-H19/miR-148a-3p/Rock2 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8768327. [PMID: 31934270 PMCID: PMC6942897 DOI: 10.1155/2019/8768327] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that metformin not only is a hypoglycemic agent but also has neuroprotective effects. However, the mechanism of action of metformin in ischemic stroke is unclear. Oxidative stress is an important factor in the pathogenesis of cerebral ischemia-reperfusion injury. It has been reported that metformin is associated with stroke risk in the clinical population. This study is aimed at investigating the effect and mechanism of metformin in an experimental model of oxidative stress induced by ischemia/reperfusion (I/R) in vivo and oxygen glucose deprivation/reperfusion (OGD/R) in vitro. Metformin (100, 200, and 300 mg/kg) was administered intraperitoneally immediately after induction of cerebral ischemia. The indicators of oxidative stress selected were antioxidant enzyme activities of catalase, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and glutathione peroxidation enzyme (GSHPx). First, we demonstrated that metformin can significantly alleviate acute and chronic cerebral I/R injury and it has a strong regulatory effect on stroke-induced oxidative stress. It can reduce the elevated activities of MDA and NO and increase the levels of GSHPx and SOD in the cerebrum of mice and N2a cells exposed to I/R. Furthermore, real-time PCR and western blot were used to detect the expression of long noncoding RNA H19 (lncRNA-H19), microRNA-148a-3p (miR-148a-3p), and Rho-associated protein kinase 2 (Rock2). The direct interaction of lncRNA-H19, miR-148a-3p, and Rock2 was tested using a dual luciferase reporter assay. lncRNA-H19 altered OGD/R-induced oxidative stress by modulating miR-148a-3p to increase Rock2 expression. The expression of lncRNA-H19 and Rock2 could be downregulated with metformin in vivo and in vitro. In conclusion, our study confirmed that metformin exerts neuroprotective effects by regulating ischemic stroke-induced oxidative stress injury via the lncRNA-H19/miR-148a-3p/Rock2 axis. These results provide new evidence that metformin may represent a potential treatment for stroke-related brain injury.
Collapse
|
28
|
New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4598167. [PMID: 31915506 PMCID: PMC6930799 DOI: 10.1155/2019/4598167] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng, Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating aging-related diseases with herbal medicine.
Collapse
|
29
|
Chen Y, Beng H, Su H, Han F, Fan Z, Lv N, Jovanović A, Tan W. Isosteviol prevents the development of isoprenaline‑induced myocardial hypertrophy. Int J Mol Med 2019; 44:1932-1942. [PMID: 31545484 PMCID: PMC6777692 DOI: 10.3892/ijmm.2019.4342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/30/2019] [Indexed: 11/06/2022] Open
Abstract
Isosteviol sodium (STVNa), which is a derivate of the natural sweet-tasting glycoside stevioside, has recently been developed and it has been determined that this compound exhibits neuro- and cardio-protective properties. In the current study, whether STVNa interferes with the development of cardiac hypertrophy, which is induced by isoprenaline (Iso), was investigated in an experimental rat model. Rats were treated with a vehicle (0.9% NaCl; control), isoprenaline (Iso; 5 mg/kg) or Iso (5 mg/kg) with STVNa (4 mg/kg; Iso + STVNa). Cardiomyocytes were isolated using enzymatic dissociation and were treated with 5 µM Iso for 24 h and co-treated with 5 µM STVNa. Brain natriuretic peptide (BNP) mRNA expression was determined using PCR analysis. Cell surface area, intracellular reactive oxygen species (ROS), mitochondrial transmembrane potential (ΔΨm), cytoplasmic Ca2+ and Ca2+ and contractile function were examined using a laser scanning confocal microscope. The current study demonstrated that STVNa inhibited Iso-induced cardiac hypertrophy by inhibiting cardiomyocyte size. STVNa significantly reduced cell surface area and decreased BNP mRNA expression in ventricular cardiomyocyte Iso-induced hypertrophy. STVNa was also revealed to restore ΔΨm and reduce ROS generation and intracellular Ca2+ concentration when compared with the Iso-treated group. Additionally, STVNa preserved Ca2+ transients in hypertrophic cardiomyocytes. In conclusion, the present study demonstrated that STVNa protects against Iso-induced myocardial hypertrophy by reducing oxidative stress, restoring ΔΨm and maintaining Ca2+ homeostasis.
Collapse
Affiliation(s)
- Yaoxu Chen
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Huimin Beng
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Hao Su
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Fuping Han
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Zhuo Fan
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Nanying Lv
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, CY‑1700 Nicosia, Cyprus
| | - Wen Tan
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| |
Collapse
|
30
|
Zhang H, Lu M, Zhang X, Kuai Y, Mei Y, Tan Q, Zhong K, Sun X, Tan W. Isosteviol Sodium Protects against Ischemic Stroke by Modulating Microglia/Macrophage Polarization via Disruption of GAS5/miR-146a-5p sponge. Sci Rep 2019; 9:12221. [PMID: 31434993 PMCID: PMC6704123 DOI: 10.1038/s41598-019-48759-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown that transforming microglia phenotype from pro-inflammation of M1 phenotype to anti-inflammation and tissue-repairing M2 phenotype may be an effective therapeutic strategy for preventing ischemic stroke brain injury. Isosteviol Sodium (STV-Na) has shown promise as a neuroprotective agent in cerebral ischemia model, although its effect on microglial polarization and chronic recovery after stroke is not clear. Here, we demonstrated that STV-Na treatment significantly reduced cerebral ischemic damage at both acute and chronic time points. STV-Na has a profound regulatory effect on microglia response after stroke. It can promote M2 polarization and inhibit microglia-mediated inflammation (M1) response following stroke in vivo and in vitro. Furthermore, we also found that Growth Arrest-Specific 5 (GAS5) altered OGD/R-induced microglial activation by increasing Notch1 expression via miR-146a-5p, the mRNA level of GAS5 and the protein level of Notch1 in vivo and in vitro, were discovered that both downgraded with STV-Na. Taken together, the present study demonstrated that STV-Na exerted neuroprotective effects by modulating microglia/macrophage polarization in ischemic stroke via the GAS5/miR-146a-5p sponge. These findings provide new evidence that targeting STV-Na could be a treatment for the prevention of stroke-related brain damage.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Minyi Lu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xiaofeng Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yihe Kuai
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ying Mei
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Qiwen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Kailun Zhong
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
31
|
Deng Y, Chen D, Wang L, Gao F, Jin B, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Miao Z. Silencing of Long Noncoding RNA Nespas Aggravates Microglial Cell Death and Neuroinflammation in Ischemic Stroke. Stroke 2019; 50:1850-1858. [PMID: 31167620 PMCID: PMC6594728 DOI: 10.1161/strokeaha.118.023376] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Ischemic stroke is one of the leading causes of morbidity and mortality worldwide and a major cause of long-term disability. Recently, long noncoding RNAs have been revealed, which are tightly associated with several human diseases. However, the functions of long noncoding RNAs in ischemic stroke still remain largely unknown. In the current study, for the first time, we investigated the role of long noncoding RNA Nespas in ischemic stroke. Methods- We used in vivo models of middle cerebral artery occlusion and in vitro models of oxygen-glucose deprivation to illustrate the effect of long noncoding RNA Nespas on ischemic stroke. Results- We found expression of Nespas was significantly increased in ischemic cerebral tissues and oxygen-glucose deprivation-treated BV2 cells in a time-dependent manner. Silencing of Nespas aggravated middle cerebral artery occlusion operation-induced IR injury and cell death. In addition, proinflammatory cytokine production and NF-κB (nuclear factor-κB) signaling activation were inhibited by Nespas overexpression. TAK1 (transforming growth factor-β-activated kinase 1) was found to directly interact with Nespas, and TAK1 activation was significantly suppressed by Nespas. At last, we found Nespas-inhibited TRIM8 (tripartite motif 8)-induced K63-linked polyubiquitination of TAK1. Conclusions- We showed that Nespas played anti-inflammatory and antiapoptotic roles in cultured microglial cells after oxygen-glucose deprivation stimulation and in mice after ischemic stroke by inhibiting TRIM8-related K63-linked polyubiquitination of TAK1.
Collapse
Affiliation(s)
- Yiming Deng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Duanduan Chen
- From the School of Life Science (D.C., T.Y.), Beijing Institute of Technology, China.,Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology (D.C., T.Y.), Beijing Institute of Technology, China
| | - Luyao Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering (L.W.), Beijing Institute of Technology, China
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China (B.J., H.L., G.Z.)
| | - Hong Lv
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China (B.J., H.L., G.Z.)
| | - Guojun Zhang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China (B.J., H.L., G.Z.)
| | - Xuan Sun
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Lian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Dapeng Mo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Ligang Song
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Xiaochuan Huo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Tianyi Yan
- From the School of Life Science (D.C., T.Y.), Beijing Institute of Technology, China.,Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology (D.C., T.Y.), Beijing Institute of Technology, China
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| |
Collapse
|
32
|
Synthesis of Isosteviol analogues as potential protective agents against Doxorubicin-induced cardiomyopathy in zebrafish embryos. Bioorg Med Chem Lett 2019; 29:1705-1709. [PMID: 31129053 DOI: 10.1016/j.bmcl.2019.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/12/2023]
Abstract
Doxorubicin (DOX) is a powerful anthracycline antibiotic agent which is widely used to treat various types of cancers. Despite efficacy, it displays severe cardiotoxic side effects. Discovery of novel and effective protective agents against DOX-induced cardiotoxicity has been a subject of great interest. Herein, we report the synthesis of two series of analogues of Isosteviol (ISV) 1 with modifications at C-16, C-19 positions as the first series and at C-15, C-16 positions as the other series. Interestingly second series analogues have shown a potential protective effect against DOX-induced cardiotoxicity in zebrafish embryos in vivo. Further, we have demonstrated that the synthesized new analogues of ISV, prevented the morphological distortions caused due to DOX cardiotoxicity in zebrafish heart and the associated cardiac impairments.
Collapse
|
33
|
Wan HD, He GZ, Zhang HJ. Isosteviol preparation and inclusion complexation of it with γ-cyclodextrin. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00907-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Isosteviol sodium injection improves outcomes by modulating TLRs/NF-κB-dependent inflammatory responses following experimental traumatic brain injury in rats. Neuroreport 2019; 29:794-803. [PMID: 29683870 PMCID: PMC5999382 DOI: 10.1097/wnr.0000000000001033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text. Previous studies have shown that isosteviol sodium (STVNa) protects against permanent cerebral ischemia injury by inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-mediated inflammatory responses. Overwhelming evidence shows that toll-like receptors (TLRs) are the upstream regulators of NF-κB. On the basis of the similarity of the pathology caused by traumatic brain injury (TBI) and stroke, we speculated that STVNa may have a therapeutic effect against TBI through regulation of the TLRs/NF-κB signaling-mediated inflammatory response. Thus, we studied the potential therapeutic effects of STVNa and the underlying mechanisms. Male rats, subjected to controlled cortical impact (CCI) injury, were injected intraperitoneally with STVNa (5, 10, 20, 40, and 80 mg/kg, daily for 3 or 7 days) after trauma. Neurobehavioral scores, relative numbers of cortical lesions, and histology were examined. We also measured the mRNA and protein expression levels of TLRs/NF-κB signaling pathway-related genes including TLR2, TLR4, and NF-κB by quantitative real-time-PCR and western blotting, respectively, and concentrations of tumor necrosis factor-α and interleukin-1β by an enzyme-linked immunosorbent assay. The results indicated that STVNa (20 mg/kg) showed significant neuroprotective effects 3 and 7 days after TBI, including the reduction of cortical lesions, improvement of the neurological severity score, significantly increased number of restored neurons, decreased number of astrocytes, and lower concentrations of tumor necrosis factor-α and interleukin-1β. Results from quantitative real-time-PCR and western blotting also show that the mRNA and protein expression levels of TLR2, TLR4, and NF-κB were significantly lower in STVNa-treated rats compared with the vehicle-treated rats. The administration of STVNa attenuates the TLR/NF-κB signaling pathway-mediated inflammatory responses in the injured rat brain, and this may be the mechanism by which STVNa improves the outcome following TBI.
Collapse
|
35
|
Zhong KL, Lu MY, Liu F, Mei Y, Zhang XJ, Zhang H, Zan J, Sun XO, Tan W. Isosteviol Sodium Protects Neural Cells Against Hypoxia-Induced Apoptosis Through Inhibiting MAPK and NF-κB Pathways. J Stroke Cerebrovasc Dis 2018; 28:175-184. [PMID: 30539754 DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Stevioside, isolated from the herb Stevia rebaudiana, has been widely used as a food sweetener all over the world. Isosteviol Sodium (STV-Na), an injectable formulation of isosteviol sodium salt, has been proved to possess much greater solubility and bioavailability and exhibit protective effects against cerebral ischemia injury in vivo by inhibiting neuron apoptosis. However, the underlying mechanisms of the neuroprotective effects STV-Na are still not completely known. In the present study, we investigated the effects of STV-Na on neuronal cell death caused by hypoxia in vitro and its underlying mechanisms. METHODS We used cobalt chloride (CoCl2) to expose mouse neuroblastoma N2a cells to hypoxic conditions in vitro. RESULTS Our results showed that pretreatment with STV-Na (20 μM) significantly attenuated the decrease of cell viability, lactate dehydrogenase release and cell apoptosis under conditions of CoCl2-induced hypoxia. Meanwhile, STV-Na pretreatment significantly attenuated the upregulation of intracellular Ca2+ concentration and reactive oxygen species production, and inhibited mitochondrial depolarization in N2a cells under conditions of CoCl2-induced hypoxia. Furthermore, STV-Na pretreatment significantly downregulated expressions of nitric oxide synthase, interleukin-1β, tumor necrosis factor-α, interleukin-6, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) signalings in N2a cells under conditions of CoCl2-induced hypoxia. CONCLUSIONS Taken together, STV-Na protects neural cells against hypoxia-induced apoptosis through inhibiting MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Kai-Lun Zhong
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Min-Yi Lu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Fei Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ying Mei
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xue-Ju Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jie Zan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xiao-Ou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
36
|
Zhang H, Sun X, Xie Y, Tian F, Hu H, Tan W. Isosteviol Sodium Inhibits Astrogliosis after Cerebral Ischemia/Reperfusion Injury in Rats. Biol Pharm Bull 2018; 41:575-584. [PMID: 29607930 DOI: 10.1248/bpb.b17-00921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous reports have indicated that isosteviol sodium (STVNa) has neuroprotective effects against acute focal cerebral ischemia in rats; however, the exact underlying mechanisms and ideal treatment paradigm are not known. To find a reasonable method for STVNa administration and to determine its possible therapeutic mechanisms, we characterized the protective effects of single-dose and multiple-dose STVNa in cerebral ischemic/reperfusion (I/R) injury in rats. Single and multiple treatments with 10 mg/kg STVNa were administered intraperitoneally after injury to investigate its neuroprotective effects. Neurobehavioral deficits and infarct volume were assessed 7 d after ischemia. Both STVNa treatments reduced infarct volumes, improved neurological behaviors, preserved cellular morphology, enhanced neuronal survival, and suppressed cell apoptosis. Multiple treatments performed better than single treatment. Reactive astrogliosis was apparent at 7 d after injury and was significantly inhibited by multiple STVNa treatments but not single treatment. These results indicate that STVNa exerts neuroprotection by different mechanisms in the acute and delayed phases of I/R. Specifically, STVNa neuroprotection in the delayed phase of injury was found to be accompanied with the inhibition of astrogliosis.
Collapse
Affiliation(s)
- Hao Zhang
- School of Bioscience & Bioengineering, South China University of Technology
| | - Xiaoou Sun
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology
| | - Yanxiang Xie
- School of Bioscience & Bioengineering, South China University of Technology
| | - Fang Tian
- School of Bioscience & Bioengineering, South China University of Technology
| | - Hui Hu
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology
| | - Wen Tan
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology
| |
Collapse
|
37
|
Yang Y, Yang J, Zhang H, Mo C, Zhou T, Tan W. The investigation of protective effects of isosteviol sodium on cerebral ischemia by metabolomics approach using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr 2018; 32:e4350. [DOI: 10.1002/bmc.4350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Yang
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Jina Yang
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Hao Zhang
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Canlong Mo
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Ting Zhou
- School of Biology and Biological Engineering; South China University of Technology; Guangzhou China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences; Guangdong University of Technology; Guangzhou China
| |
Collapse
|
38
|
Wang M, Li H, Xu F, Gao X, Li J, Xu S, Zhang D, Wu X, Xu J, Hua H, Li D. Diterpenoid lead stevioside and its hydrolysis products steviol and isosteviol: Biological activity and structural modification. Eur J Med Chem 2018; 156:885-906. [DOI: 10.1016/j.ejmech.2018.07.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/17/2022]
|
39
|
Tzeng HE, Huang PH, Tsai CH, Tsay GJ, Lee YJ, Huang TJ, Lin TH, Chiu YM, Wu YY. Isosteviol Derivative Inhibits Osteoclast Differentiation and Ameliorates Ovariectomy-Induced Osteoporosis. Sci Rep 2018; 8:11190. [PMID: 30046042 PMCID: PMC6060097 DOI: 10.1038/s41598-018-29257-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/09/2018] [Indexed: 12/29/2022] Open
Abstract
NC-8 (ent-16-oxobeyeran-19-N-methylureido) is an isosteviol-derived analogue with multiple biological effects, including anti-inflammation and anti-bacterial activities and inhibition of HBV viral surface antigen gene expression. In this study, we explored the effects of NC-8 on the formation of osteoclasts from RAW 264.7 cells. We found that NC-8 exerts the novel effect of inhibiting osteoclast-like cell formation. Our experiments showed that RANKL-induced ERK, p38, and JNK phosphorylation were inhibited by NC-8. An ovariectomy-induced osteoporosis animal model was used to examine the protective effects of oral treatment with NC-8. Serum analysis was used to examine markers of osteoblasts, osteoclasts, and renal and hepatic function in rats. Micro CT scanning and histological analysis were used to measure bone loss in ovariectomized rats. Oral administration of NC-8 effectively decreased excess bone resorption and significantly antagonized trabecular bone loss in ovariectomized rats. Serum analysis of C-terminal telopeptide of type-I collagen, an osteoclast marker, also showed that NC-8 administration inhibited excess bone resorption. Furthermore, serum analysis showed that renal and liver function were not affected by these doses of NC-8 during long-term treatment. Our results demonstrate that NC-8 inhibits osteoclast differentiation and effectively ameliorates ovariectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Division of Hematology/Oncology, Taipei Medical University - Shuang Ho Hospital, Taipei, Taiwan
| | - Po-Hao Huang
- Department of Internal Medicine, School of Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedics, School of Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan
| | - Gregory J Tsay
- Department of Internal Medicine, School of Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Ju Lee
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Tsurng-Juhn Huang
- Department of Biochemistry, China Medical University, Taichung, Taiwan
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County, Taiwan
| | - Ying-Ming Chiu
- Division of Allergy, Immunology & Rheumatology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Nursing, College of Medicine & Nursing, Hungkuang University, Taichung, Taiwan
| | - Yi-Ying Wu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan. .,Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
40
|
Zhang H, Zhong K, Lu M, Mei Y, Tan E, Sun X, Tan W. Neuroprotective effects of isosteviol sodium through increasing CYLD by the downregulation of miRNA-181b. Brain Res Bull 2018; 140:392-401. [DOI: 10.1016/j.brainresbull.2018.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/29/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
|
41
|
Yang Y, Zhong Q, Zhang H, Mo C, Yao J, Huang T, Zhou T, Tan W. Lipidomics study of the protective effects of isosteviol sodium on stroke rats using ultra high-performance supercritical fluid chromatography coupling with ion-trap and time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2018; 157:145-155. [PMID: 29800902 DOI: 10.1016/j.jpba.2018.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
Abstract
Isosteviol sodium (STV-Na) was reported to possess significant protective effects on ischemic stroke in recent years. However, the protective mechanism of STV-Na against stroke was still unclear. In this work, an untargeted lipidomics approach based on the ultra high-performance supercritical fluid chromatography coupling with ion-trap and time-of-flight tandem mass spectrometry (UHSFC-IT-TOF/MS) was employed to investigate the lipid profiles of stroke rats with STV-Na treatment for the first time. The possible mechanism of STV-Na was further elucidated. The UHSFC-IT-TOF/MS-based method achieved a fast separation of various lipids within 9 min with a qualified repeatability. Multivariate statistical analysis was used to show differences in lipid profiles induced by stroke and STV-Na treatment. The results showed a clear separation of the model group and the sham group, with the STV-Na group as well as EDA group located much closer to the sham group than the model group, which was consistent with the results of physiological and pathological assays, indicating the protective effects of STV-Na. Fifteen differential lipids that presented significant differences between the sham group and the model group were screened and identified. With the treatment of STV-Na, 15 differential lipids in stroke rats showed a tendency to the normal levels. Among them, 6 lipids were significantly reversed to the normal levels by STV-Na. The results of pathway analysis suggested the protective effects of STV-Na might be related to the regulation of several metabolic pathways including glycerophospholipid metabolism, arachidonic acid metabolism and sphingolipid metabolism. This work demonstrated that the UHSFC-IT-TOF/MS-based lipidomics profiling method was a useful tool to investigate the protective effects of STV-Na against stroke.
Collapse
Affiliation(s)
- Yang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qisheng Zhong
- Shimadzu (China) Corporation, Guangzhou branch, 510010, China
| | - Hao Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Canlong Mo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jinting Yao
- Shimadzu (China) Corporation, Guangzhou branch, 510010, China
| | - Taohong Huang
- Shimadzu (China) Corporation, Shanghai branch, 200233, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|