1
|
Tokutomi T, Yoshida A, Fukushima A, Nagami F, Minoura Y, Sasaki M. Stakeholder Perception of the Implementation of Genetic Risk Testing for Twelve Multifactorial Diseases. Genes (Basel) 2023; 15:49. [PMID: 38254940 PMCID: PMC10815213 DOI: 10.3390/genes15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Genome-wide association studies have been employed to develop numerous risk prediction models using polygenic risk scores (PRSs) for multifactorial diseases. However, healthcare providers lack confidence in their understanding of PRS risk stratification for multifactorial diseases, which underscores the need to assess the readiness of PRSs for clinical use. To address this issue, we surveyed the perceptions of healthcare providers as stakeholders in the clinical implementation of genetic-based risk prediction for multifactorial diseases. We conducted a web-based study on the need for risk prediction based on genetic information and the appropriate timing of testing for 12 multifactorial diseases. Responses were obtained from 506 stakeholders. Positive perceptions of genetic risk testing were found for adult-onset chronic diseases. As per participant opinion, testing for adult-onset diseases should be performed after the age of 20 years, whereas testing for psychiatric and allergic disorders that manifest during childhood should be performed from birth to 19 years of age. The stakeholders recognized the need for genetic risk testing for diseases that develop in adulthood, believing that the appropriate testing time is after maturity. This study contributes to the discussion on the clinical implementation of the PRS for genetic risk prediction of multifactorial diseases.
Collapse
Affiliation(s)
- Tomoharu Tokutomi
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa 020-3694, Japan; (A.Y.)
- Department of Clinical Genetics, School of Medicine, Iwate Medical University, Iwate 020-8505, Japan
| | - Akiko Yoshida
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa 020-3694, Japan; (A.Y.)
- Department of Clinical Genetics, School of Medicine, Iwate Medical University, Iwate 020-8505, Japan
| | - Akimune Fukushima
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa 020-3694, Japan; (A.Y.)
- Department of Clinical Genetics, School of Medicine, Iwate Medical University, Iwate 020-8505, Japan
| | - Fuji Nagami
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-0872, Japan
| | - Yuko Minoura
- Departments of Medical Genetics and Genomics, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa 020-3694, Japan; (A.Y.)
| |
Collapse
|
2
|
Wang P, Wang Y, Peng H, Wang J, Zheng Q, Wang P, Wang J, Zhang H, Huang Y, Xiong L, Zhang R, Xia Y, Wang QK, Xu C. Functional rare variant in a C/EBP beta binding site in NINJ2 gene increases the risk of coronary artery disease. Aging (Albany NY) 2021; 13:25393-25407. [PMID: 34897030 PMCID: PMC8714150 DOI: 10.18632/aging.203755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
Objective: NINJ2 regulates activation of vascular endothelial cells, and genome-wide association studies showed that variants in NINJ2 confer risk to stroke. However, whether variants in NINJ2 are associated with coronary artery disease (CAD) is unknown. Methods: We genotyped rs34166160 in NINJ2 in two independent Chinese GeneID populations which included 2,794 CAD cases and 4,131 controls, and performed genetics association studies. Functional studies were also performed to reveal the mechanisms. Results: Allele rs34166160 significantly confers risk to CAD in the GeneID Hubei population which contained 1,440 CAD cases and 2,660 CAD-free controls (observed P-obs = 6.39 × 10−3 with an odds ratio (OR) was 3.39, adjusted P-adj = 8.12 × 10−3 with an OR of 3.10). The association was replicated in another population, GeneID Shandong population contained 1,354 CAD cases and 1,471 controls (P-obs = 3.33 × 10−3 with an OR of 3.14, P-adj = 0.01 with an OR of 2.74). After combining the two populations, the association was more significant (P-obs = 1.57 × 10−5 with an OR of 3.58, P-adj = 3.41 × 10−4 with an OR of 2.80). In addition, we found that rs34166160 was associated with the mRNA expression level of NINJ2 and the flanking region of rs34166160 can directly bind with transcriptional factor CCAAT-box/enhancer-binding protein beta, and the risk A allele has more transcription activity than non-risk C allele with or without LPS in HUVEC cells. Conclusions: Our study demonstrates that the functional rare variant rs34166160 in NINJ2 confers risk to CAD for the first time, and these findings further expand the range of the pathology of CAD and atherosclerosis.
Collapse
Affiliation(s)
- Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yifan Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Huixin Peng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jingjing Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, PR China
| | - Qian Zheng
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Pengxia Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Jing Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Hongfu Zhang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Yufeng Huang
- Precision Medical Laboratory, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Huazhong University of Science and Technology, Wuhan, PR China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Qing K Wang
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Human Genome Research Center, Cardio-X Institute, College of Life Science and Technology of Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
6
|
Xiong H, Yang Q, Zhang X, Wang P, Chen F, Liu Y, Wang P, Zhao Y, Li S, Huang Y, Chen S, Wang X, Zhang H, Yu D, Tan C, Fang C, Huang Y, Wu G, Wu Y, Cheng X, Liao Y, Zhang R, Yang Y, Ke T, Ren X, Li H, Tu X, Xia Y, Xu C, Chen Q, Wang QK. Significant association of rare variant p.Gly8Ser in cardiac sodium channel β4-subunit SCN4B with atrial fibrillation. Ann Hum Genet 2019; 83:239-248. [PMID: 30821358 DOI: 10.1111/ahg.12305] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022]
Abstract
Atrial fibrillation (AF) affects 33.5 million individuals worldwide. It accounts for 15% of strokes and increases risk of heart failure and sudden death. The voltage-gated cardiac sodium channel complex is responsible for the generation and conduction of the cardiac action potential, and composed of the main pore-forming α-subunit Nav 1.5 (encoded by the SCN5A gene) and one or more auxiliary β-subunits, including Nav β1 to Nav β4 encoded by SCN1B to SCN4B, respectively. We and others identified loss-of-function mutations in SCN1B and SCN2B and dominant-negative mutations in SCN3B in patients with AF. Three missense variants in SCN4B were identified in sporadic AF patients and small nuclear families; however, the association between SCN4B variants and AF remains to be further defined. In this study, we performed mutational analysis in SCN4B using a panel of 477 AF patients, and identified one nonsynonymous genomic variant p.Gly8Ser in four patients. To assess the association between the p.Gly8Ser variant and AF, we carried out case-control association studies with two independent populations (944 AF patients vs. 9,81 non-AF controls in the first discovery population and 732 cases and 1,291 controls in the second replication population). Significant association was identified in the two independent populations and in the combined population (p = 4.16 × 10-4 , odds ratio [OR] = 3.14) between p.Gly8Ser and common AF as well as lone AF (p = 0.018, OR = 2.85). These data suggest that rare variant p.Gly8Ser of SCN4B confers a significant risk of AF, and SCN4B is a candidate susceptibility gene for AF.
Collapse
Affiliation(s)
- Hongbo Xiong
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Pengxia Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Chen
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengyun Wang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfu Zhang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Chencheng Tan
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Fang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Huang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Department of Cardiology, People's Hospital, Wuhan University, Wuhan, China
| | - Yanxia Wu
- Department of Cardiology, the First Affiliated Hospital of Wuhan City, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanzong Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tie Ke
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Ren
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chengqi Xu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| | - Qing K Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China.,Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|