1
|
Wang Y, Wang C, Li J. Neutrophil extracellular traps: a catalyst for atherosclerosis. Mol Cell Biochem 2024; 479:3213-3227. [PMID: 38401035 DOI: 10.1007/s11010-024-04931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/26/2024]
Abstract
Neutrophil extracellular traps (NETs) are network-like structures released by activated neutrophils. They consist mainly of double-stranded DNA, histones, and neutrophil granule proteins. Continuous release of NETs in response to external stimuli leads to activation of surrounding platelets and monocytes/macrophages, resulting in damage to endothelial cells (EC) and vascular smooth muscle cells (VSMC). Some clinical trials have demonstrated the association between NETs and the severity and prognosis of atherosclerosis. Furthermore, experimental findings have shed light on the molecular mechanisms by which NETs contribute to atherogenesis. NETs play a significant role in the formation of atherosclerotic plaques. This review focuses on recent advancements in the understanding of the relationship between NETs and atherosclerosis. It explores various aspects, including the formation of NETs in atherosclerosis, clinical trials investigating NET-induced atherosclerosis, the mechanisms by which NETs promote atherogenesis, and the translational implications of NETs. Ultimately, we aim to propose new research directions for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yinyu Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Cuiping Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Jiayan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Zhu Y, Wang T, Yang Y, Wang Z, Chen X, Wang L, Niu R, Sun Z, Zhang C, Luo Y, Hu Y, Gu W. Low shear stress exacerbates atherosclerosis by inducing the generation of neutrophil extracellular traps via Piezo1-mediated mechanosensation. Atherosclerosis 2024; 391:117473. [PMID: 38412763 DOI: 10.1016/j.atherosclerosis.2024.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic lipid-driven inflammatory disease largely influenced by hemodynamics. Neutrophil extracellular trap (NET)-mediated inflammation plays an important role in atherosclerosis. However, little is known about the relationship between low shear stress (LSS) and NET generation, as well as the underlying mechanism. METHODS We induced LSS by partial ligation of the left carotid artery in high-fat diet-fed male ApoE-/- mice. To further validate the direct relationship between LSS and NET formation invitro, differentiated human promyelocytic leukemia HL-60 cells and bone marrow-derived neutrophils were suspended in fluid flow under normal or low shear stress using a parallel-plate flow chamber system. RESULTS Four weeks after surgery, ligated carotid arteries had more lipid deposition, larger plaque area, and increased NET formation than unligated arteries. Inhibition of NETosis could significantly reduce plaque formation in ApoE-/- mice. Invitro, LSS could promote NET generation directly through downregulation of Piezo1, a mechanosensitive ion channel. Downregulation of Piezol could activate neutrophils and promote NETosis in static conditions. Conversely, Yoda1-evoked activation of Piezo1 attenuated LSS-induced NETosis. Mechanistically, downregulation of Piezo1 resulted in decreased Ca2+ influx and increased histone deacetylase 2 (HDAC2), which increased reactive oxygen species levels and led to NETosis. LSS-induced NET generation also promoted apoptosis and adherence of endothelial cells. CONCLUSION LSS directly promotes NETosis through the Piezo1-HDAC2 axis in atherosclerosis progression. This study uncovers the essential role of Piezo1-mediated mechanical signaling in NET generation and plaque formation, which provides a promising therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Yang
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xiaohui Chen
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Ruyan Niu
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Chong Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Yijie Hu
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
3
|
Takahira R, Ujifuku K, Izumo T, Xie A, Okamura K, Morofuji Y, Matsuo T. Do neutrophil extracellular traps implicate in atheromatous plaques from carotid endarterectomy? Re-analyzes of cDNA microarray data by surgeons. Front Neurol 2023; 14:1267136. [PMID: 38187160 PMCID: PMC10770953 DOI: 10.3389/fneur.2023.1267136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024] Open
Abstract
Background Carotid artery stenosis is the cause of 15% of strokes. Neutrophil extracellular traps (NETs) and peptidyl arginine deiminase 4 (PAD4) are believed to be involved in thrombosis. This pilot study described the differential expression profile of NETs between atheromatous plaques and surrounding tissues. Methods Microarray datasets of carotid plaques were obtained from Gene Expression Omnibus. The normalized data were processed into comma-separated value matrix files using spreadsheet software. Analyzes of microarray data were conducted using integrated differential expression and pathway analysis. Result The clustering results illustrated that the classifications of plaque and control had reasonable biological validity. Pathway analysis revealed the relevance of immune response, cell signaling, and other pathways. Differentially expressed genes were detected between carotid plaques and control specimens. However, enrichment analyzes did not reveal a difference in PAD4 expression between the groups and that NET implication was only found in one cDNA microarray dataset. Discussion This pilot study does not necessarily dismiss the possibility of a relationship between NETs and atherothrombotic stroke. Gene expression could differ between endothelial cells and atheromas, and further studies are needed.
Collapse
Affiliation(s)
| | | | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
4
|
Liaptsi E, Merkouris E, Polatidou E, Tsiptsios D, Gkantzios A, Kokkotis C, Petridis F, Christidi F, Karatzetzou S, Karaoglanis C, Tsagkalidi AM, Chouliaras N, Tsamakis K, Protopapa M, Pantazis-Pergaminelis D, Skendros P, Aggelousis N, Vadikolias K. Targeting Neutrophil Extracellular Traps for Stroke Prognosis: A Promising Path. Neurol Int 2023; 15:1212-1226. [PMID: 37873833 PMCID: PMC10594510 DOI: 10.3390/neurolint15040076] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Stroke has become the first cause of functional disability and one of the leading causes of mortality worldwide. Therefore, it is of crucial importance to develop accurate biomarkers to assess stroke risk and prognosis. Emerging evidence suggests that neutrophil extracellular trap (NET) levels may serve as a valuable biomarker to predict stroke occurrence and functional outcome. NETs are known to create a procoagulant state by serving as a scaffold for tissue factor (TF) and platelets inducing thrombosis by activating coagulation pathways and endothelium. A literature search was conducted in two databases (MEDLINE and Scopus) to trace all relevant studies published between 1 January 2016 and 31 December 2022, addressing the potential utility of NETs as a stroke biomarker. Only full-text articles in English were included. The current review includes thirty-three papers. Elevated NET levels in plasma and thrombi seem to be associated with increased mortality and worse functional outcomes in stroke, with all acute ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage included. Additionally, higher NET levels seem to correlate with worse outcomes after recanalization therapies and are more frequently found in strokes of cardioembolic or cryptogenic origin. Additionally, total neutrophil count in plasma seems also to correlate with stroke severity. Overall, NETs may be a promising predictive tool to assess stroke severity, functional outcome, and response to recanalization therapies.
Collapse
Affiliation(s)
- Eirini Liaptsi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Ermis Merkouris
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Efthymia Polatidou
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Aimilios Gkantzios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Foteini Christidi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Stella Karatzetzou
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Christos Karaoglanis
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Anna-Maria Tsagkalidi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Nikolaos Chouliaras
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| | - Konstantinos Tsamakis
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK;
| | - Maria Protopapa
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Dimitrios Pantazis-Pergaminelis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Panagiotis Skendros
- First Department of Internal Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece; (C.K.); (M.P.); (D.P.-P.); (N.A.)
| | - Konstantinos Vadikolias
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.L.); (E.M.); (E.P.); (A.G.); (F.C.); (S.K.); (C.K.); (A.-M.T.); (N.C.); (K.V.)
| |
Collapse
|
5
|
Rosário M, Fonseca AC. Update on Biomarkers Associated with Large-Artery Atherosclerosis Stroke. Biomolecules 2023; 13:1251. [PMID: 37627316 PMCID: PMC10452079 DOI: 10.3390/biom13081251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Intracranial and extracranial large-artery atherosclerosis (LAA) are a main cause of ischemic stroke. Biomarkers may aid in the diagnosis of LAA and help to stratify patients' risk of stroke. We performed a narrative review of the literature, mainly published in the last five years, with the aim of identifying biomarkers associated either with intracranial or extracranial LAA in humans. Several potential biomarkers of LAA, mainly related to lipidic pathways and inflammation, have been studied. Diagnostic biomarkers of LAA were evaluated by measuring biomarkers levels in patients with LAA stroke and other stroke etiologies. Some biomarkers were associated with the functional prognosis of LAA stroke patients. Increased levels of IL-6 and sLOX-1 were associated with a risk of progression of carotid atherosclerotic disease. Findings support the notion that the immune system plays a central role in the pathogenesis of LAA. Overall, in most studies, results were not externally validated. In the future, biomarkers could be useful for the selection of patients for clinical trials. To adopt these biomarkers in clinical practice, we will need robust multicentric studies proving their reproducibility and a clear practical applicability for their use.
Collapse
Affiliation(s)
- Madalena Rosário
- Stroke Unit, Neurology, Neuroscience Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Ana Catarina Fonseca
- Stroke Unit, Neurology, Neuroscience Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
Zdanyte M, Borst O, Münzer P. NET-(works) in arterial and venous thrombo-occlusive diseases. Front Cardiovasc Med 2023; 10:1155512. [PMID: 37283578 PMCID: PMC10239889 DOI: 10.3389/fcvm.2023.1155512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Formation of Neutrophil Extracellular Traps (NETosis), accompanied by the release of extracellular decondensed chromatin and pro-inflammatory as well as pro-thrombotic factors, is a pivotal element in the development and progression of thrombo-occlusive diseases. While the process of NETosis is based on complex intracellular signalling mechanisms, it impacts a wide variety of cells including platelets, leukocytes and endothelial cells. Consequently, although initially mainly associated with venous thromboembolism, NETs also affect and mediate atherothrombosis and its acute complications in the coronary, cerebral and peripheral arterial vasculature. In this context, besides deep vein thrombosis and pulmonary embolism, NETs in atherosclerosis and especially its acute complications such as myocardial infarction and ischemic stroke gained a lot of attention in the cardiovascular research field in the last decade. Thus, since the effect of NETosis on platelets and thrombosis in general is extensively discussed in other review articles, this review focusses on the translational and clinical relevance of NETosis research in cardiovascular thrombo-occlusive diseases. Consequently, after a brief summary of the neutrophil physiology and the cellular and molecular mechanisms underlying NETosis are presented, the role of NETosis in atherosclerotic and venous thrombo-occlusive diseases in chronic and acute settings are discussed. Finally, potential prevention and treatment strategies of NET-associated thrombo-occlusive diseases are considered.
Collapse
Affiliation(s)
- Monika Zdanyte
- DFG Heisenberg Group Thrombocardiology, Eberhard Karl University Tübingen, Tübingen, Germany
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Oliver Borst
- DFG Heisenberg Group Thrombocardiology, Eberhard Karl University Tübingen, Tübingen, Germany
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Münzer
- DFG Heisenberg Group Thrombocardiology, Eberhard Karl University Tübingen, Tübingen, Germany
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Deng Y, Jiang S, Lin X, Wang B, Chen B, Tong J, Shi W, Yu B, Tang J. Differential expression profile of miRNAs between stable and vulnerable plaques of carotid artery stenosis patients. Genes Genet Syst 2023. [PMID: 37121730 DOI: 10.1266/ggs.22-00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Plaque vulnerability is associated with the degree of carotid artery stenosis (CS) and the risk of stroke. MicroRNAs (miRNAs) exert critical functions in disease progression, although only a few miRNAs have been well identified in CS. Therefore, this study aimed to investigate the differential expression profile of miRNAs and their potential functions in plaques of CS patients. Three CS patients with stable plaques and three patients with vulnerable plaques who underwent carotid endarterectomy were enrolled in this study. Differentially expressed miRNAs (DEmiRNAs) between patients with stable and vulnerable plaques were determined using small RNA sequencing. Target genes of DEmiRNAs were predicted and submitted to functional analyses. Validation of dysregulated DEmiRNAs was determined using quantitative real-time polymerase chain reaction (qRT-PCR). After sequencing, 76 DEmiRNAs were identified in vulnerable plaques, including 53 upregulated miRNAs and 23 downregulated miRNAs. Next, 23,495 target genes of the identified DEmiRNAs were predicted and functionally analyzed. This indicated that the target genes of the identified DEmiRNAs were mainly enriched in protein phosphorylation, transcription, nitrogen compound metabolism, endocytosis and autophagy, and related to signaling pathways of Hippo, MAPK, insulin, TGF-β, FoxO, AMPK and p53. Furthermore, qRT-PCR results for six miRNAs showed that five (83%) of them (hsa-miR-511-5p, hsa-miR-150-5p, hsa-miR-378a-5p, hsa-miR-365b-5p and hsa-miR-6511b-5p) were consistent with the sequencing results. Differential expression profiles and potential function of miRNAs associated with plaque stability in CS patients are identified for the first time, which should help to understand the regulatory mechanism of plaque stability in CS.
Collapse
Affiliation(s)
- Ying Deng
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Shuai Jiang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Xueguang Lin
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Bo Wang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Bo Chen
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Weijun Shi
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| | - Jingdong Tang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
- Fudan Zhangjiang Institute
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling
| |
Collapse
|
8
|
Zhu C, Liu C, Chai Z. Role of the PADI family in inflammatory autoimmune diseases and cancers: A systematic review. Front Immunol 2023; 14:1115794. [PMID: 37020554 PMCID: PMC10067674 DOI: 10.3389/fimmu.2023.1115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| |
Collapse
|
9
|
Urbanowicz T, Olasińska-Wiśniewska A, Michalak M, Perek B, Al-Imam A, Rodzki M, Witkowska A, Straburzyńska-Migaj E, Bociański M, Misterski M, Lesiak M, Jemielity M. Pre-operative systemic inflammatory response index influences long-term survival rate in off-pump surgical revascularization. PLoS One 2022; 17:e0276138. [PMID: 36520919 PMCID: PMC9754600 DOI: 10.1371/journal.pone.0276138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary artery bypass revascularization is still the optimal treatment for complex coronary artery disease with good long-term results. The relation between inflammatory activation in the post-operative period and the long-term prognosis was already postulated. The possible predictive role of preoperative inflammatory indexes after the off-pump coronary artery bypass grafting technique on long term survival was the aim of the study. Study population included 171 patients with a median age of 64 years (59-64) operated on using off-pump technique between January and December 2014. Patients enrolled in the current study were followed-up for 8 years. We conducted a multivariable analysis of pre-operative and post-operative inflammatory markers based on analysis of the whole blood count. The overall survival rate was 80% for the total follow-up period, while 34 deaths were reported (30-days mortality rate of 1%). In the multivariable analysis, a pre-operative value of systemic inflammatory response index (SIRI) >1.27 (HR = 6.16, 95% CI 2.17-17.48, p = 0.012) revealed a prognostic value for long-term mortality assessment after off-pump surgery. Preoperative inflammatory activation evaluated by systemic inflammatory reaction index (SIRI) possess a prognostic value for patients with complex coronary artery disease. The SIRI value above 1.27 indicates a worse late prognosis after off-pump coronary artery bypass (AUC = 0.682, p<0.001).
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
- * E-mail:
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Ahmed Al-Imam
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
- Department of Anatomy and Cellular Biology, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Michał Rodzki
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Witkowska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Michał Bociański
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Misterski
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Lesiak
- 1 Cardiology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
10
|
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 2022; 19:177-191. [PMID: 35039631 PMCID: PMC8803838 DOI: 10.1038/s41423-021-00832-3] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Zhou Y, Tao W, Shen F, Du W, Xu Z, Liu Z. The Emerging Role of Neutrophil Extracellular Traps in Arterial, Venous and Cancer-Associated Thrombosis. Front Cardiovasc Med 2021; 8:786387. [PMID: 34926629 PMCID: PMC8674622 DOI: 10.3389/fcvm.2021.786387] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.
Collapse
Affiliation(s)
- Yilu Zhou
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weimin Tao
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuyi Shen
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weijia Du
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Xu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqiang Liu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|