2
|
Croci S, Venneri MA, Mantovani S, Fallerini C, Benetti E, Picchiotti N, Campolo F, Imperatore F, Palmieri M, Daga S, Gabbi C, Montagnani F, Beligni G, Farias TDJ, Carriero ML, Di Sarno L, Alaverdian D, Aslaksen S, Cubellis MV, Spiga O, Baldassarri M, Fava F, Norman PJ, Frullanti E, Isidori AM, Amoroso A, Mari F, Furini S, Mondelli MU, Gen-Covid Multicenter Study, Chiariello M, Renieri A, Meloni I. The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males. Autophagy 2021; 18:1662-1672. [PMID: 34964709 PMCID: PMC9298458 DOI: 10.1080/15548627.2021.1995152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor
Collapse
Affiliation(s)
- Susanna Croci
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Picchiotti
- DIISM-SAILAB, University of Siena, Siena, Italy.,Department of Mathematics, University of Pavia, Pavia, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Imperatore
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Maria Palmieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Gabbi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Montagnani
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Medical Sciences, Infectious and Tropical Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giada Beligni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ticiana D J Farias
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miriam Lucia Carriero
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Laura Di Sarno
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Diana Alaverdian
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sigrid Aslaksen
- Department of Clinical Science, Universty of Bergen and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | | | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elisa Frullanti
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy.,Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Mario Chiariello
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Aslaksen S, Methlie P, Vigeland MD, Jøssang DE, Wolff AB, Sheng Y, Oftedal BE, Skinningsrud B, Undlien DE, Selmer KK, Husebye ES, Bratland E. Coexistence of Congenital Adrenal Hyperplasia and Autoimmune Addison's Disease. Front Endocrinol (Lausanne) 2019; 10:648. [PMID: 31611844 PMCID: PMC6776599 DOI: 10.3389/fendo.2019.00648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/06/2019] [Indexed: 11/21/2022] Open
Abstract
Background: Underlying causes of adrenal insufficiency include congenital adrenal hyperplasia (CAH) and autoimmune adrenocortical destruction leading to autoimmune Addison's disease (AAD). Here, we report a patient with a homozygous stop-gain mutation in 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2), in addition to impaired steroidogenesis due to AAD. Case Report: Whole exome sequencing revealed an extremely rare homozygous nonsense mutation in exon 2 of the HSD3B2 gene, leading to a premature stop codon (NM_000198.3: c.15C>A, p.Cys5Ter) in a patient with AAD and premature ovarian insufficiency. Scrutiny of old medical records revealed that the patient was initially diagnosed with CAH with hyperandrogenism and severe salt-wasting shortly after birth. However, the current steroid profile show complete adrenal insufficiency including low production of pregnenolone, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEA-S), without signs of overtreatment with steroids. Conclusion: To the best of our knowledge, this is the first description of autoimmune adrenalitis in a patient with 3βHSD2 deficiency and suggests a possible association between AAD and inborn errors of the steroidogenesis.
Collapse
Affiliation(s)
- Sigrid Aslaksen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | - Paal Methlie
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Magnus D. Vigeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Dag E. Jøssang
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Anette B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | | | - Dag E. Undlien
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Kaja K. Selmer
- Division of Clinical Neuroscience, Department of Research and Development, Oslo University Hospital, University of Oslo, Oslo, Norway
- National Centre for Epilepsy, Oslo University Hospital, Oslo, Norway
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| |
Collapse
|