1
|
miRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides. Sci Rep 2020; 10:14557. [PMID: 32884018 PMCID: PMC7471944 DOI: 10.1038/s41598-020-71381-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are one kind of non-coding RNA, play vital role in regulating several physiological and developmental processes. Subcellular localization of miRNAs and their abundance in the native cell are central for maintaining physiological homeostasis. Besides, RNA silencing activity of miRNAs is also influenced by their localization and stability. Thus, development of computational method for subcellular localization prediction of miRNAs is desired. In this work, we have proposed a computational method for predicting subcellular localizations of miRNAs based on principal component scores of thermodynamic, structural properties and pseudo compositions of di-nucleotides. Prediction accuracy was analyzed following fivefold cross validation, where ~ 63–71% of AUC-ROC and ~ 69–76% of AUC-PR were observed. While evaluated with independent test set, > 50% localizations were found to be correctly predicted. Besides, the developed computational model achieved higher accuracy than the existing methods. A user-friendly prediction server “miRNALoc” is freely accessible at https://cabgrid.res.in:8080/mirnaloc/, by which the user can predict localizations of miRNAs.
Collapse
|
2
|
Abstract
During the last three decades or so, many efforts have been made to study the protein cleavage
sites by some disease-causing enzyme, such as HIV (Human Immunodeficiency Virus) protease
and SARS (Severe Acute Respiratory Syndrome) coronavirus main proteinase. It has become increasingly
clear <i>via</i> this mini-review that the motivation driving the aforementioned studies is quite wise,
and that the results acquired through these studies are very rewarding, particularly for developing peptide
drugs.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
3
|
Tan JX, Lv H, Wang F, Dao FY, Chen W, Ding H. A Survey for Predicting Enzyme Family Classes Using Machine Learning Methods. Curr Drug Targets 2020; 20:540-550. [PMID: 30277150 DOI: 10.2174/1389450119666181002143355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
Enzymes are proteins that act as biological catalysts to speed up cellular biochemical processes. According to their main Enzyme Commission (EC) numbers, enzymes are divided into six categories: EC-1: oxidoreductase; EC-2: transferase; EC-3: hydrolase; EC-4: lyase; EC-5: isomerase and EC-6: synthetase. Different enzymes have different biological functions and acting objects. Therefore, knowing which family an enzyme belongs to can help infer its catalytic mechanism and provide information about the relevant biological function. With the large amount of protein sequences influxing into databanks in the post-genomics age, the annotation of the family for an enzyme is very important. Since the experimental methods are cost ineffective, bioinformatics tool will be a great help for accurately classifying the family of the enzymes. In this review, we summarized the application of machine learning methods in the prediction of enzyme family from different aspects. We hope that this review will provide insights and inspirations for the researches on enzyme family classification.
Collapse
Affiliation(s)
- Jiu-Xin Tan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lv
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fang Wang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063000, China.,Gordon Life Science Institute, Boston, MA 02478, United States
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
4
|
Mohabatkar H, Ebrahimi S, Moradi M. Using Chou’s Five-steps Rule to Classify and Predict Glutathione S-transferases with Different Machine Learning Algorithms and Pseudo Amino Acid Composition. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10087-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
|
6
|
Some illuminating remarks on molecular genetics and genomics as well as drug development. Mol Genet Genomics 2020; 295:261-274. [PMID: 31894399 DOI: 10.1007/s00438-019-01634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Facing the explosive growth of biological sequences unearthed in the post-genomic age, one of the most important but also most difficult problems in computational biology is how to express a biological sequence with a discrete model or a vector, but still keep it with considerable sequence-order information or its special pattern. To deal with such a challenging problem, the ideas of "pseudo amino acid components" and "pseudo K-tuple nucleotide composition" have been proposed. The ideas and their approaches have further stimulated the birth for "distorted key theory", "wenxing diagram", and substantially strengthening the power in treating the multi-label systems, as well as the establishment of the famous "5-steps rule". All these logic developments are quite natural that are very useful not only for theoretical scientists but also for experimental scientists in conducting genetics/genomics analysis and drug development. Presented in this review paper are also their future perspectives; i.e., their impacts will become even more significant and propounding.
Collapse
|
7
|
Shao YT, Liu XX, Lu Z, Chou KC. pLoc_Deep-mHum: Predict Subcellular Localization of Human Proteins by Deep Learning. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ns.2020.127042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Shao Y, Chou KC. pLoc_Deep-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by Deep Learning. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ns.2020.126034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics 2019; 111:1274-1282. [DOI: 10.1016/j.ygeno.2018.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
|
10
|
Chou KC. Advances in Predicting Subcellular Localization of Multi-label Proteins and its Implication for Developing Multi-target Drugs. Curr Med Chem 2019; 26:4918-4943. [PMID: 31060481 DOI: 10.2174/0929867326666190507082559] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
The smallest unit of life is a cell, which contains numerous protein molecules. Most
of the functions critical to the cell’s survival are performed by these proteins located in its different
organelles, usually called ‘‘subcellular locations”. Information of subcellular localization
for a protein can provide useful clues about its function. To reveal the intricate pathways at the
cellular level, knowledge of the subcellular localization of proteins in a cell is prerequisite.
Therefore, one of the fundamental goals in molecular cell biology and proteomics is to determine
the subcellular locations of proteins in an entire cell. It is also indispensable for prioritizing
and selecting the right targets for drug development. Unfortunately, it is both timeconsuming
and costly to determine the subcellular locations of proteins purely based on experiments.
With the avalanche of protein sequences generated in the post-genomic age, it is highly
desired to develop computational methods for rapidly and effectively identifying the subcellular
locations of uncharacterized proteins based on their sequences information alone. Actually,
considerable progresses have been achieved in this regard. This review is focused on those
methods, which have the capacity to deal with multi-label proteins that may simultaneously
exist in two or more subcellular location sites. Protein molecules with this kind of characteristic
are vitally important for finding multi-target drugs, a current hot trend in drug development.
Focused in this review are also those methods that have use-friendly web-servers established so
that the majority of experimental scientists can use them to get the desired results without the
need to go through the detailed mathematics involved.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
11
|
Su ZD, Huang Y, Zhang ZY, Zhao YW, Wang D, Chen W, Chou KC, Lin H. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics 2019; 34:4196-4204. [PMID: 29931187 DOI: 10.1093/bioinformatics/bty508] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Motivation Long non-coding RNAs (lncRNAs) are a class of RNA molecules with more than 200 nucleotides. They have important functions in cell development and metabolism, such as genetic markers, genome rearrangements, chromatin modifications, cell cycle regulation, transcription and translation. Their functions are generally closely related to their localization in the cell. Therefore, knowledge about their subcellular locations can provide very useful clues or preliminary insight into their biological functions. Although biochemical experiments could determine the localization of lncRNAs in a cell, they are both time-consuming and expensive. Therefore, it is highly desirable to develop bioinformatics tools for fast and effective identification of their subcellular locations. Results We developed a sequence-based bioinformatics tool called 'iLoc-lncRNA' to predict the subcellular locations of LncRNAs by incorporating the 8-tuple nucleotide features into the general PseKNC (Pseudo K-tuple Nucleotide Composition) via the binomial distribution approach. Rigorous jackknife tests have shown that the overall accuracy achieved by the new predictor on a stringent benchmark dataset is 86.72%, which is over 20% higher than that by the existing state-of-the-art predictor evaluated on the same tests. Availability and implementation A user-friendly webserver has been established at http://lin-group.cn/server/iLoc-LncRNA, by which users can easily obtain their desired results. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhen-Dong Su
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhao-Yue Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ya-Wei Zhao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Wang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China.,Gordon Life Science Institute, Boston, MA, USA
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Gordon Life Science Institute, Boston, MA, USA
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Gordon Life Science Institute, Boston, MA, USA
| |
Collapse
|
12
|
Abstract
The smallest unit of life is a cell, which contains numerous protein molecules. Most
of the functions critical to the cell’s survival are performed by these proteins located in its different
organelles, usually called ‘‘subcellular locations”. Information of subcellular localization
for a protein can provide useful clues about its function. To reveal the intricate pathways at the
cellular level, knowledge of the subcellular localization of proteins in a cell is prerequisite.
Therefore, one of the fundamental goals in molecular cell biology and proteomics is to determine
the subcellular locations of proteins in an entire cell. It is also indispensable for prioritizing
and selecting the right targets for drug development. Unfortunately, it is both timeconsuming
and costly to determine the subcellular locations of proteins purely based on experiments.
With the avalanche of protein sequences generated in the post-genomic age, it is highly
desired to develop computational methods for rapidly and effectively identifying the subcellular
locations of uncharacterized proteins based on their sequences information alone. Actually,
considerable progresses have been achieved in this regard. This review is focused on those
methods, which have the capacity to deal with multi-label proteins that may simultaneously
exist in two or more subcellular location sites. Protein molecules with this kind of characteristic
are vitally important for finding multi-target drugs, a current hot trend in drug development.
Focused in this review are also those methods that have use-friendly web-servers established so
that the majority of experimental scientists can use them to get the desired results without the
need to go through the detailed mathematics involved.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
13
|
Chou KC. Proposing Pseudo Amino Acid Components is an Important Milestone for Proteome and Genome Analyses. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09910-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
|
15
|
Xiao X, Cheng X, Chen G, Mao Q, Chou KC. pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou's General PseAAC and IHTS Treatment to Balance Training Dataset. Med Chem 2019; 15:496-509. [DOI: 10.2174/1573406415666181217114710] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
Background/Objective:Knowledge of protein subcellular localization is vitally important for both basic research and drug development. Facing the avalanche of protein sequences emerging in the post-genomic age, it is urgent to develop computational tools for timely and effectively identifying their subcellular localization based on the sequence information alone. Recently, a predictor called “pLoc-mVirus” was developed for identifying the subcellular localization of virus proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, known as “multiplex proteins”, may simultaneously occur in, or move between two or more subcellular location sites. Despite the fact that it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mVirus was trained by an extremely skewed dataset in which some subset was over 10 times the size of the other subsets. Accordingly, it cannot avoid the biased consequence caused by such an uneven training dataset.Methods:Using the Chou's general PseAAC (Pseudo Amino Acid Composition) approach and the IHTS (Inserting Hypothetical Training Samples) treatment to balance out the training dataset, we have developed a new predictor called “pLoc_bal-mVirus” for predicting the subcellular localization of multi-label virus proteins.Results:Cross-validation tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mVirus, the existing state-of-theart predictor for the same purpose.Conclusion:Its user-friendly web-server is available at http://www.jci-bioinfo.cn/pLoc_balmVirus/, by which the majority of experimental scientists can easily get their desired results without the need to go through the detailed complicated mathematics. Accordingly, pLoc_bal-mVirus will become a very useful tool for designing multi-target drugs and in-depth understanding of the biological process in a cell.
Collapse
Affiliation(s)
- Xuan Xiao
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Xiang Cheng
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Genqiang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qi Mao
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
16
|
Chou KC, Cheng X, Xiao X. pLoc_bal-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by General PseAAC and Quasi-balancing Training Dataset. Med Chem 2019; 15:472-485. [DOI: 10.2174/1573406415666181218102517] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
<P>Background/Objective: Information of protein subcellular localization is crucially important for both basic research and drug development. With the explosive growth of protein sequences discovered in the post-genomic age, it is highly demanded to develop powerful bioinformatics tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called “pLoc-mEuk” was developed for identifying the subcellular localization of eukaryotic proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems where many proteins, called “multiplex proteins”, may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mEuk was trained by an extremely skewed dataset where some subset was about 200 times the size of the other subsets. Accordingly, it cannot avoid the biased consequence caused by such an uneven training dataset. </P><P> Methods: To alleviate such bias, we have developed a new predictor called pLoc_bal-mEuk by quasi-balancing the training dataset. Cross-validation tests on exactly the same experimentconfirmed dataset have indicated that the proposed new predictor is remarkably superior to pLocmEuk, the existing state-of-the-art predictor in identifying the subcellular localization of eukaryotic proteins. It has not escaped our notice that the quasi-balancing treatment can also be used to deal with many other biological systems. </P><P> Results: To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mEuk/. </P><P> Conclusion: It is anticipated that the pLoc_bal-Euk predictor holds very high potential to become a useful high throughput tool in identifying the subcellular localization of eukaryotic proteins, particularly for finding multi-target drugs that is currently a very hot trend trend in drug development.</P>
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Xiang Cheng
- Gordon Life Science Institute, Boston, MA 02478, United States
| | - Xuan Xiao
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
17
|
Niu B, Liang C, Lu Y, Zhao M, Chen Q, Zhang Y, Zheng L, Chou KC. Glioma stages prediction based on machine learning algorithm combined with protein-protein interaction networks. Genomics 2019; 112:837-847. [PMID: 31150762 DOI: 10.1016/j.ygeno.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glioma is the most lethal nervous system cancer. Recent studies have made great efforts to study the occurrence and development of glioma, but the molecular mechanisms are still unclear. This study was designed to reveal the molecular mechanisms of glioma based on protein-protein interaction network combined with machine learning methods. Key differentially expressed genes (DEGs) were screened and selected by using the protein-protein interaction (PPI) networks. RESULTS As a result, 19 genes between grade I and grade II, 21 genes between grade II and grade III, and 20 genes between grade III and grade IV. Then, five machine learning methods were employed to predict the gliomas stages based on the selected key genes. After comparison, Complement Naive Bayes classifier was employed to build the prediction model for grade II-III with accuracy 72.8%. And Random forest was employed to build the prediction model for grade I-II and grade III-VI with accuracy 97.1% and 83.2%, respectively. Finally, the selected genes were analyzed by PPI networks, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the results improve our understanding of the biological functions of select DEGs involved in glioma growth. We expect that the key genes expressed have a guiding significance for the occurrence of gliomas or, at the very least, that they are useful for tumor researchers. CONCLUSION Machine learning combined with PPI networks, GO and KEGG analyses of selected DEGs improve our understanding of the biological functions involved in glioma growth.
Collapse
Affiliation(s)
- Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Chaofeng Liang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Manman Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yuhui Zhang
- Renji Hospital, Medical School, Shanghai Jiaotong University, 160 Pujian Rd, New Pudong District, Shanghai 200127, China; Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Radiology, Shanghai First People's Hospital, Baoshan Branch, Shanghai 200940, China.
| | - Kuo-Chen Chou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| |
Collapse
|
18
|
Jia J, Li X, Qiu W, Xiao X, Chou KC. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J Theor Biol 2019; 460:195-203. [DOI: 10.1016/j.jtbi.2018.10.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/16/2018] [Accepted: 10/08/2018] [Indexed: 01/11/2023]
|
19
|
Xiao X, Xu ZC, Qiu WR, Wang P, Ge HT, Chou KC. iPSW(2L)-PseKNC: A two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics 2018; 111:1785-1793. [PMID: 30529532 DOI: 10.1016/j.ygeno.2018.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022]
Abstract
The promoter is a regulatory DNA region about 81-1000 base pairs long, usually located near the transcription start site (TSS) along upstream of a given gene. By combining a certain protein called transcription factor, the promoter provides the starting point for regulated gene transcription, and hence plays a vitally important role in gene transcriptional regulation. With explosive growth of DNA sequences in the post-genomic age, it has become an urgent challenge to develop computational method for effectively identifying promoters because the information thus obtained is very useful for both basic research and drug development. Although some prediction methods were developed in this regard, most of them were limited at merely identifying whether a query DNA sequence being of a promoter or not. However, based on their strength-distinct levels for transcriptional activation and expression, promoter should be divided into two categories: strong and weak types. Here a new two-layer predictor, called "iPSW(2L)-PseKNC", was developed by fusing the physicochemical properties of nucleotides and their nucleotide density into PseKNC (pseudo K-tuple nucleotide composition). Its 1st-layer serves to predict whether a query DNA sequence sample is of promoter or not, while its 2nd-layer is able to predict the strength of promoters. It has been observed through rigorous cross-validations that the 1st-layer sub-predictor is remarkably superior to the existing state-of-the-art predictors in identifying the promoters and non-promoters, and that the 2nd-layer sub-predictor can do what is beyond the reach of the existing predictors. Moreover, the web-server for iPSW(2L)-PseKNC has been established at http://www.jci-bioinfo.cn/iPSW(2L)-PseKNC, by which the majority of experimental scientists can easily get the results they need.
Collapse
Affiliation(s)
- Xuan Xiao
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Zhao-Chun Xu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China.
| | - Wang-Ren Qiu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA
| | - Peng Wang
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Hui-Ting Ge
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Kuo-Chen Chou
- The Gordon Life Science Institute, Boston, MA 02478, USA; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
20
|
Cheng X, Xiao X, Chou KC. pLoc_bal-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J Theor Biol 2018; 458:92-102. [DOI: 10.1016/j.jtbi.2018.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023]
|
21
|
Toropova AP, Toropov AA, Benfenati E. Semi-correlations as a tool to build up categorical (active/inactive) model of GABAA receptor modulator activity. Struct Chem 2018. [DOI: 10.1007/s11224-018-1226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Chen W, Ding H, Zhou X, Lin H, Chou KC. iRNA(m6A)-PseDNC: Identifying N 6-methyladenosine sites using pseudo dinucleotide composition. Anal Biochem 2018; 561-562:59-65. [PMID: 30201554 DOI: 10.1016/j.ab.2018.09.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023]
Abstract
As a prevalent post-transcriptional modification, N6-methyladenosine (m6A) plays key roles in a series of biological processes. Although experimental technologies have been developed and applied to identify m6A sites, they are still cost-ineffective for transcriptome-wide detections of m6A. As good complements to the experimental techniques, some computational methods have been proposed to identify m6A sites. However, their performance remains unsatisfactory. In this study, we firstly proposed an Euclidean distance based method to construct a high quality benchmark dataset. By encoding the RNA sequences using pseudo nucleotide composition, a new predictor called iRNA(m6A)-PseDNC was developed to identify m6A sites in the Saccharomyces cerevisiae genome. It has been demonstrated by the 10-fold cross validation test that the performance of iRNA(m6A)-PseDNC is superior to the existing methods. Meanwhile, for the convenience of most experimental scientists, established at the site http://lin-group.cn/server/iRNA(m6A)-PseDNC.php is its web-server, by which users can easily get their desired results without need to go through the detailed mathematics. It is anticipated that iRNA(m6A)-PseDNC will become a useful high throughput tool for identifying m6A sites in the S. cerevisiae genome.
Collapse
Affiliation(s)
- Wei Chen
- School of Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China; Gordon Life Science Institute, Boston, MA, 02478, USA.
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Xu Zhou
- School of Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, China.
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Gordon Life Science Institute, Boston, MA, 02478, USA.
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Gordon Life Science Institute, Boston, MA, 02478, USA.
| |
Collapse
|
23
|
Qiu WR, Sun BQ, Xiao X, Xu ZC, Jia JH, Chou KC. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics 2018; 110:239-246. [DOI: 10.1016/j.ygeno.2017.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023]
|
24
|
Cheng X, Lin WZ, Xiao X, Chou KC. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics 2018; 35:398-406. [DOI: 10.1093/bioinformatics/bty628] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xiang Cheng
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
| | - Wei-Zhong Lin
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Xuan Xiao
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
| | - Kuo-Chen Chou
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Chen W, Feng P, Yang H, Ding H, Lin H, Chou KC. iRNA-3typeA: Identifying Three Types of Modification at RNA's Adenosine Sites. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:468-474. [PMID: 29858081 PMCID: PMC5992483 DOI: 10.1016/j.omtn.2018.03.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Abstract
RNA modifications are additions of chemical groups to nucleotides or their local structural changes. Knowledge about the occurrence sites of these modifications is essential for in-depth understanding of the biological functions and mechanisms and for treating some genomic diseases as well. With the avalanche of RNA sequences generated in the post-genomic age, many computational methods have been proposed for identifying various types of RNA modifications one by one. However, so far no method whatsoever has been developed for simultaneously identifying several different types of RNA modifications. To address such a challenge, we developed a predictor called "iRNA-3typeA," by which we can simultaneously identify the occurrence sites of the following three most frequently observed modifications in RNA: (1) N1-methyladenosine (m1A), (2) N6-methyladenosine (m6A), and (3) adenosine to inosine (A-to-I). It has been shown via rigorous cross-validations for the RNA sequences from Homo sapiens and Mus musculus transcriptomes that the success rates achieved by the powerful new predictor are quite high. For the convenience of broad experimental scientists, a user-friendly web server for iRNA-3typeA has been established at http://lin-group.cn/server/iRNA-3typeA/. It is anticipated that iRNA-3typeA may become a useful high throughput tool for genome analysis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063000, China; Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Pengmian Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA
| |
Collapse
|
26
|
pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics 2018; 111:886-892. [PMID: 29842950 DOI: 10.1016/j.ygeno.2018.05.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
Knowledge of protein subcellular localization is vitally important for both basic research and drug development. With the avalanche of protein sequences emerging in the post-genomic age, it is highly desired to develop computational tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called "pLoc-mGpos" was developed for identifying the subcellular localization of Gram-positive bacterial proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, called "multiplex proteins", may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mGpos was trained by an extremely skewed dataset in which some subset (subcellular location) was over 11 times the size of the other subsets. Accordingly, it cannot avoid the bias consequence caused by such an uneven training dataset. To alleviate such bias consequence, we have developed a new and bias-reducing predictor called pLoc_bal-mGpos by quasi-balancing the training dataset. Rigorous target jackknife tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mGpos, the existing state-of-the-art predictor in identifying the subcellular localization of Gram-positive bacterial proteins. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mGpos/, by which users can easily get their desired results without the need to go through the detailed mathematics.
Collapse
|
27
|
Song J, Li F, Takemoto K, Haffari G, Akutsu T, Chou KC, Webb GI. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. J Theor Biol 2018; 443:125-137. [DOI: 10.1016/j.jtbi.2018.01.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
|
28
|
Abstract
Cancer is a serious health issue worldwide. Traditional treatment methods focus on killing cancer cells by using anticancer drugs or radiation therapy, but the cost of these methods is quite high, and in addition there are side effects. With the discovery of anticancer peptides, great progress has been made in cancer treatment. For the purpose of prompting the application of anticancer peptides in cancer treatment, it is necessary to use computational methods to identify anticancer peptides (ACPs). In this paper, we propose a sequence-based model for identifying ACPs (SAP). In our proposed SAP, the peptide is represented by 400D features or 400D features with g-gap dipeptide features, and then the unrelated features are pruned using the maximum relevance-maximum distance method. The experimental results demonstrate that our model performs better than some existing methods. Furthermore, our model has also been extended to other classifiers, and the performance is stable compared with some state-of-the-art works.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518060, China.
| | - Guangmin Liang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518060, China.
| | - Longjie Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518060, China.
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
29
|
Feng P, Yang H, Ding H, Lin H, Chen W, Chou KC. iDNA6mA-PseKNC: Identifying DNA N 6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics 2018; 111:96-102. [PMID: 29360500 DOI: 10.1016/j.ygeno.2018.01.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/24/2017] [Accepted: 01/07/2018] [Indexed: 11/29/2022]
Abstract
N6-methyladenine (6mA) is one kind of post-replication modification (PTM or PTRM) occurring in a wide range of DNA sequences. Accurate identification of its sites will be very helpful for revealing the biological functions of 6mA, but it is time-consuming and expensive to determine them by experiments alone. Unfortunately, so far, no bioinformatics tool is available to do so. To fill in such an empty area, we have proposed a novel predictor called iDNA6mA-PseKNC that is established by incorporating nucleotide physicochemical properties into Pseudo K-tuple Nucleotide Composition (PseKNC). It has been observed via rigorous cross-validations that the predictor's sensitivity (Sn), specificity (Sp), accuracy (Acc), and stability (MCC) are 93%, 100%, 96%, and 0.93, respectively. For the convenience of most experimental scientists, a user-friendly web server for iDNA6mA-PseKNC has been established at http://lin-group.cn/server/iDNA6mA-PseKNC, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved.
Collapse
Affiliation(s)
- Pengmian Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Wei Chen
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Tangshan 063000, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| |
Collapse
|
30
|
pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics 2018; 110:50-58. [DOI: 10.1016/j.ygeno.2017.08.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022]
|
31
|
iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 2017; 7:16895-909. [PMID: 26942877 PMCID: PMC4941358 DOI: 10.18632/oncotarget.7815] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer remains a major killer worldwide. Traditional methods of cancer treatment are expensive and have some deleterious side effects on normal cells. Fortunately, the discovery of anticancer peptides (ACPs) has paved a new way for cancer treatment. With the explosive growth of peptide sequences generated in the post genomic age, it is highly desired to develop computational methods for rapidly and effectively identifying ACPs, so as to speed up their application in treating cancer. Here we report a sequence-based predictor called iACP developed by the approach of optimizing the g-gap dipeptide components. It was demonstrated by rigorous cross-validations that the new predictor remarkably outperformed the existing predictors for the same purpose in both overall accuracy and stability. For the convenience of most experimental scientists, a publicly accessible web-server for iACP has been established at http://lin.uestc.edu.cn/server/iACP, by which users can easily obtain their desired results.
Collapse
|
32
|
Du PF, Zhao W, Miao YY, Wei LY, Wang L. UltraPse: A Universal and Extensible Software Platform for Representing Biological Sequences. Int J Mol Sci 2017; 18:ijms18112400. [PMID: 29135934 PMCID: PMC5713368 DOI: 10.3390/ijms18112400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/12/2023] Open
Abstract
With the avalanche of biological sequences in public databases, one of the most challenging problems in computational biology is to predict their biological functions and cellular attributes. Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore, it is important to be able to represent biological sequences with various lengths using fixed-length numerical vectors. Although several algorithms, as well as software implementations, have been developed to address this problem, these existing programs can only provide a fixed number of representation modes. Every time a new sequence representation mode is developed, a new program will be needed. In this paper, we propose the UltraPse as a universal software platform for this problem. The function of the UltraPse is not only to generate various existing sequence representation modes, but also to simplify all future programming works in developing novel representation modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own representation mode, their own physicochemical properties, or even their own types of biological sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package, as well as the executables for both Linux and Windows platforms, can be downloaded from the GitHub repository.
Collapse
Affiliation(s)
- Pu-Feng Du
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
| | - Wei Zhao
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
| | - Yang-Yang Miao
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
- School of Chemical Engineering, Tianjin University, Tianjin 300350, China.
| | - Le-Yi Wei
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
| | - Likun Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
33
|
Cheng X, Xiao X, Chou KC. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics 2017; 34:1448-1456. [DOI: 10.1093/bioinformatics/btx711] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/31/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- Xiang Cheng
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
| | - Xuan Xiao
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
| | - Kuo-Chen Chou
- Computer Science, Jingdezhen Ceramic Institute, Jingdezhen, China
- Computational Biology, Gordon Life Science Institute, Boston, MA, USA
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
34
|
Cheng X, Xiao X, Chou KC. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics 2017; 110:S0888-7543(17)30102-7. [PMID: 28989035 DOI: 10.1016/j.ygeno.2017.10.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Information of the proteins' subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called "pLoc-mGneg" for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to "iLoc-Gneg", the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved.
Collapse
Affiliation(s)
- Xiang Cheng
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Xuan Xiao
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China; The Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Kuo-Chen Chou
- The Gordon Life Science Institute, Boston, MA 02478, USA; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
35
|
Liu B, Yang F, Huang DS, Chou KC. iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics 2017; 34:33-40. [DOI: 10.1093/bioinformatics/btx579] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/13/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China
- The Gordon Life Science Institute, Boston, MA, USA
| | - Fan Yang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - De-Shuang Huang
- Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Kuo-Chen Chou
- The Gordon Life Science Institute, Boston, MA, USA
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene 2017; 628:315-321. [DOI: 10.1016/j.gene.2017.07.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
|
37
|
Akbar S, Hayat M, Iqbal M, Jan MA. iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space. Artif Intell Med 2017; 79:62-70. [PMID: 28655440 DOI: 10.1016/j.artmed.2017.06.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 01/10/2023]
Abstract
Cancer is a fatal disease, responsible for one-quarter of all deaths in developed countries. Traditional anticancer therapies such as, chemotherapy and radiation, are highly expensive, susceptible to errors and ineffective techniques. These conventional techniques induce severe side-effects on human cells. Due to perilous impact of cancer, the development of an accurate and highly efficient intelligent computational model is desirable for identification of anticancer peptides. In this paper, evolutionary intelligent genetic algorithm-based ensemble model, 'iACP-GAEnsC', is proposed for the identification of anticancer peptides. In this model, the protein sequences are formulated, using three different discrete feature representation methods, i.e., amphiphilic Pseudo amino acid composition, g-Gap dipeptide composition, and Reduce amino acid alphabet composition. The performance of the extracted feature spaces are investigated separately and then merged to exhibit the significance of hybridization. In addition, the predicted results of individual classifiers are combined together, using optimized genetic algorithm and simple majority technique in order to enhance the true classification rate. It is observed that genetic algorithm-based ensemble classification outperforms than individual classifiers as well as simple majority voting base ensemble. The performance of genetic algorithm-based ensemble classification is highly reported on hybrid feature space, with an accuracy of 96.45%. In comparison to the existing techniques, 'iACP-GAEnsC' model has achieved remarkable improvement in terms of various performance metrics. Based on the simulation results, it is observed that 'iACP-GAEnsC' model might be a leading tool in the field of drug design and proteomics for researchers.
Collapse
Affiliation(s)
- Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University Mardan, KP 23200, Pakistan.
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, KP 23200, Pakistan.
| | - Muhammad Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, KP 23200, Pakistan.
| | - Mian Ahmad Jan
- Department of Computer Science, Abdul Wali Khan University Mardan, KP 23200, Pakistan.
| |
Collapse
|
38
|
Identification of Candidate Genes Related to Inflammatory Bowel Disease Using Minimum Redundancy Maximum Relevance, Incremental Feature Selection, and the Shortest-Path Approach. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5741948. [PMID: 28293637 PMCID: PMC5331171 DOI: 10.1155/2017/5741948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/11/2017] [Indexed: 02/08/2023]
Abstract
Identification of disease genes is a hot topic in biomedicine and genomics. However, it is a challenging problem because of the complexity of diseases. Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. It has been proven to be associated with the development of intestinal malignancies. Although the specific pathological characteristics and genetic background of IBD have been partially revealed, it is still an overdetermined disease and the blueprint of all genetic variants still needs to be improved. In this study, a novel computational method was built to identify genes related to IBD. Samples from two subtypes of IBD (ulcerative colitis and Crohn's disease) and normal samples were employed. By analyzing the gene expression profiles of these samples using minimum redundancy maximum relevance and incremental feature selection, 21 genes were obtained that could effectively distinguish samples from the two subtypes of IBD and the normal samples. Then, the shortest-path approach was used to search for an additional 20 genes in a large network constructed using protein-protein interactions based on the above-mentioned 21 genes. Analyses of the 41 genes obtained indicate that they are closely associated with this disease.
Collapse
|
39
|
Xiao X, Cheng X, Su S, Mao Q, Chou KC. pLoc-mGpos: Incorporate Key Gene Ontology Information into General PseAAC for Predicting Subcellular Localization of Gram-Positive Bacterial Proteins. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ns.2017.99032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Cheng X, Xiao X, Chou KC. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. MOLECULAR BIOSYSTEMS 2017; 13:1722-1727. [DOI: 10.1039/c7mb00267j] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One of the fundamental goals in cellular biochemistry is to identify the functions of proteins in the context of compartments that organize them in the cellular environment.
Collapse
Affiliation(s)
- Xiang Cheng
- Computer Department
- Jingdezhen Ceramic Institute
- Jingdezhen
- China
| | - Xuan Xiao
- Computer Department
- Jingdezhen Ceramic Institute
- Jingdezhen
- China
- The Gordon Life Science Institute
| | - Kuo-Chen Chou
- The Gordon Life Science Institute
- Boston
- USA
- Center for Informational Biology
- University of Electronic Science and Technology of China
| |
Collapse
|
41
|
Liu B, Wu H, Chou KC. Pse-in-One 2.0: An Improved Package of Web Servers for Generating Various Modes of Pseudo Components of DNA, RNA, and Protein Sequences. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ns.2017.94007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Hassanzadeh HR, Phan JH, Wang MD. A Multi-Modal Graph-Based Semi-Supervised Pipeline for Predicting Cancer Survival. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2016; 2016:184-189. [PMID: 32655981 DOI: 10.1109/bibm.2016.7822516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer survival prediction is an active area of research that can help prevent unnecessary therapies and improve patient's quality of life. Gene expression profiling is being widely used in cancer studies to discover informative biomarkers that aid predict different clinical endpoint prediction. We use multiple modalities of data derived from RNA deep-sequencing (RNA-seq) to predict survival of cancer patients. Despite the wealth of information available in expression profiles of cancer tumors, fulfilling the aforementioned objective remains a big challenge, for the most part, due to the paucity of data samples compared to the high dimension of the expression profiles. As such, analysis of transcriptomic data modalities calls for state-of-the-art big-data analytics techniques that can maximally use all the available data to discover the relevant information hidden within a significant amount of noise. In this paper, we propose a pipeline that predicts cancer patients' survival by exploiting the structure of the input (manifold learning) and by leveraging the unlabeled samples using Laplacian support vector machines, a graph-based semi supervised learning (GSSL) paradigm. We show that under certain circumstances, no single modality per se will result in the best accuracy and by fusing different models together via a stacked generalization strategy, we may boost the accuracy synergistically. We apply our approach to two cancer datasets and present promising results. We maintain that a similar pipeline can be used for predictive tasks where labeled samples are expensive to acquire.
Collapse
Affiliation(s)
- Hamid Reza Hassanzadeh
- Department of Computational Science and Engineering, Georgia Institute of Technology Atlanta, Georgia 30332
| | - John H Phan
- Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - May D Wang
- Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| |
Collapse
|
43
|
Analysis of Important Gene Ontology Terms and Biological Pathways Related to Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7861274. [PMID: 27957501 PMCID: PMC5120232 DOI: 10.1155/2016/7861274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/18/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is a serious disease that results in more than thirty thousand deaths around the world per year. To design effective treatments, many investigators have devoted themselves to the study of biological processes and mechanisms underlying this disease. However, it is far from complete. In this study, we tried to extract important gene ontology (GO) terms and KEGG pathways for pancreatic cancer by adopting some existing computational methods. Genes that have been validated to be related to pancreatic cancer and have not been validated were represented by features derived from GO terms and KEGG pathways using the enrichment theory. A popular feature selection method, minimum redundancy maximum relevance, was employed to analyze these features and extract important GO terms and KEGG pathways. An extensive analysis of the obtained GO terms and KEGG pathways was provided to confirm the correlations between them and pancreatic cancer.
Collapse
|
44
|
The Use of Gene Ontology Term and KEGG Pathway Enrichment for Analysis of Drug Half-Life. PLoS One 2016; 11:e0165496. [PMID: 27780226 PMCID: PMC5079577 DOI: 10.1371/journal.pone.0165496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
A drug's biological half-life is defined as the time required for the human body to metabolize or eliminate 50% of the initial drug dosage. Correctly measuring the half-life of a given drug is helpful for the safe and accurate usage of the drug. In this study, we investigated which gene ontology (GO) terms and biological pathways were highly related to the determination of drug half-life. The investigated drugs, with known half-lives, were analyzed based on their enrichment scores for associated GO terms and KEGG pathways. These scores indicate which GO terms or KEGG pathways the drug targets. The feature selection method, minimum redundancy maximum relevance, was used to analyze these GO terms and KEGG pathways and to identify important GO terms and pathways, such as sodium-independent organic anion transmembrane transporter activity (GO:0015347), monoamine transmembrane transporter activity (GO:0008504), negative regulation of synaptic transmission (GO:0050805), neuroactive ligand-receptor interaction (hsa04080), serotonergic synapse (hsa04726), and linoleic acid metabolism (hsa00591), among others. This analysis confirmed our results and may show evidence for a new method in studying drug half-lives and building effective computational methods for the prediction of drug half-lives.
Collapse
|
45
|
Wang L, Wang Y, Chang Q. Feature selection methods for big data bioinformatics: A survey from the search perspective. Methods 2016; 111:21-31. [PMID: 27592382 DOI: 10.1016/j.ymeth.2016.08.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 11/26/2022] Open
Abstract
This paper surveys main principles of feature selection and their recent applications in big data bioinformatics. Instead of the commonly used categorization into filter, wrapper, and embedded approaches to feature selection, we formulate feature selection as a combinatorial optimization or search problem and categorize feature selection methods into exhaustive search, heuristic search, and hybrid methods, where heuristic search methods may further be categorized into those with or without data-distilled feature ranking measures.
Collapse
Affiliation(s)
- Lipo Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.
| | - Yaoli Wang
- College of Information Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Qing Chang
- College of Information Engineering, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
46
|
Awazu A. Prediction of nucleosome positioning by the incorporation of frequencies and distributions of three different nucleotide segment lengths into a general pseudo k-tuple nucleotide composition. Bioinformatics 2016; 33:42-48. [PMID: 27563027 PMCID: PMC5860184 DOI: 10.1093/bioinformatics/btw562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Motivation Nucleosome positioning plays important roles in many eukaryotic intranuclear processes, such as transcriptional regulation and chromatin structure formation. The investigations of nucleosome positioning rules provide a deeper understanding of these intracellular processes. Results Nucleosome positioning prediction was performed using a model consisting of three types of variables characterizing a DNA sequence—the number of five-nucleotide sequences, the number of three-nucleotide combinations in one period of a helix, and mono- and di-nucleotide distributions in DNA fragments. Using recently proposed stringent benchmark datasets with low biases for Saccharomyces cerevisiae, Homo sapiens, Caenorhabditis elegans and Drosophila melanogaster, the present model was shown to have a better prediction performance than the recently proposed predictors. This model was able to display the common and organism-dependent factors that affect nucleosome forming and inhibiting sequences as well. Therefore, the predictors developed here can accurately predict nucleosome positioning and help determine the key factors influencing this process. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Akinori Awazu
- Department of Mathematical and Life Sciences.,Research Center for Mathematics on Chromatin Live Dynamics, Hiroshima University, Kagami-yama 1-3-1, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
47
|
Chen L, Zhang YH, Zheng M, Huang T, Cai YD. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds. Mol Genet Genomics 2016; 291:2065-2079. [PMID: 27530612 DOI: 10.1007/s00438-016-1240-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022]
Abstract
Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Mingyue Zheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, 201203, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
48
|
In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2375268. [PMID: 27579307 PMCID: PMC4992803 DOI: 10.1155/2016/2375268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/08/2016] [Accepted: 06/19/2016] [Indexed: 11/17/2022]
Abstract
Gamma-aminobutyric acid type-A receptors (GABAARs) belong to multisubunit membrane spanning ligand-gated ion channels (LGICs) which act as the principal mediators of rapid inhibitory synaptic transmission in the human brain. Therefore, the category prediction of GABAARs just from the protein amino acid sequence would be very helpful for the recognition and research of novel receptors. Based on the proteins' physicochemical properties, amino acids composition and position, a GABAAR classifier was first constructed using a 188-dimensional (188D) algorithm at 90% cd-hit identity and compared with pseudo-amino acid composition (PseAAC) and ProtrWeb web-based algorithms for human GABAAR proteins. Then, four classifiers including gradient boosting decision tree (GBDT), random forest (RF), a library for support vector machine (libSVM), and k-nearest neighbor (k-NN) were compared on the dataset at cd-hit 40% low identity. This work obtained the highest correctly classified rate at 96.8% and the highest specificity at 99.29%. But the values of sensitivity, accuracy, and Matthew's correlation coefficient were a little lower than those of PseAAC and ProtrWeb; GBDT and libSVM can make a little better performance than RF and k-NN at the second dataset. In conclusion, a GABAAR classifier was successfully constructed using only the protein sequence information.
Collapse
|
49
|
Ali F, Hayat M. Machine learning approaches for discrimination of Extracellular Matrix proteins using hybrid feature space. J Theor Biol 2016; 403:30-37. [DOI: 10.1016/j.jtbi.2016.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023]
|
50
|
Chen L, Chu C, Zhang YH, Zhu C, Kong X, Huang T, Cai YD. Analysis of Gene Expression Profiles in the Human Brain Stem, Cerebellum and Cerebral Cortex. PLoS One 2016; 11:e0159395. [PMID: 27434030 PMCID: PMC4951119 DOI: 10.1371/journal.pone.0159395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/01/2016] [Indexed: 11/19/2022] Open
Abstract
The human brain is one of the most mysterious tissues in the body. Our knowledge of the human brain is limited due to the complexity of its structure and the microscopic nature of connections between brain regions and other tissues in the body. In this study, we analyzed the gene expression profiles of three brain regions-the brain stem, cerebellum and cerebral cortex-to identify genes that are differentially expressed among these different brain regions in humans and to obtain a list of robust, region-specific, differentially expressed genes by comparing the expression signatures from different individuals. Feature selection methods, specifically minimum redundancy maximum relevance and incremental feature selection, were employed to analyze the gene expression profiles. Sequential minimal optimization, a machine-learning algorithm, was employed to examine the utility of selected genes. We also performed a literature search, and we discuss the experimental evidence for the important physiological functions of several highly ranked genes, including NR2E1, DAO, and LRRC7, and we give our analyses on a gene (TFAP2B) that have not been investigated or experimentally validated. As a whole, the results of our study will improve our ability to predict and understand genes related to brain regionalization and function.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Chen Chu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Changming Zhu
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- * E-mail: (YDC); (TH)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- * E-mail: (YDC); (TH)
| |
Collapse
|