1
|
Kaboudian A, Gray RA, Uzelac I, Cherry EM, Fenton FH. Fast interactive simulations of cardiac electrical activity in anatomically accurate heart structures by compressing sparse uniform cartesian grids. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108456. [PMID: 39476551 PMCID: PMC11581144 DOI: 10.1016/j.cmpb.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Numerical simulations are valuable tools for studying cardiac arrhythmias. Not only do they complement experimental studies, but there is also an increasing expectation for their use in clinical applications to guide patient-specific procedures. However, numerical studies that solve the reaction-diffusion equations describing cardiac electrical activity remain challenging to set up, are time-consuming, and in many cases, are prohibitively computationally expensive for long studies. The computational cost of cardiac simulations of complex models on anatomically accurate structures necessitates parallel computing. Graphics processing units (GPUs), which have thousands of cores, have been introduced as a viable technology for carrying out fast cardiac simulations, sometimes including real-time interactivity. Our main objective is to increase the performance and accuracy of such GPU implementations while conserving computational resources. METHODS In this work, we present a compression algorithm that can be used to conserve GPU memory and improve efficiency by managing the sparsity that is inherent in using Cartesian grids to represent cardiac structures directly obtained from high-resolution MRI and mCT scans. Furthermore, we present a discretization scheme that includes the cross-diagonal terms in the computational cell to increase numerical accuracy, which is especially important for simulating thin tissue sections without the need for costly mesh refinement. RESULTS Interactive WebGL simulations of atrial/ventricular structures (on PCs, laptops, tablets, and phones) demonstrate the algorithm's ability to reduce memory demand by an order of magnitude and achieve calculations up to 20x faster. We further showcase its superiority in slender tissues and validate results against experiments performed in live explanted human hearts. CONCLUSIONS In this work, we present a compression algorithm that accelerates electrical activity simulations on realistic anatomies by an order of magnitude (up to 20x), thereby allowing the use of finer grid resolutions while conserving GPU memory. Additionally, improved accuracy is achieved through cross-diagonal terms, which are essential for thin tissues, often found in heart structures such as pectinate muscles and trabeculae, as well as Purkinje fibers. Our method enables interactive simulations with even interactive domain boundary manipulation (unlike finite element/volume methods). Finally, agreement with experiments and ease of mesh import into WebGL paves the way for virtual cohorts and digital twins, aiding arrhythmia analysis and personalized therapies.
Collapse
Affiliation(s)
- Abouzar Kaboudian
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Richard A Gray
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA; School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Biasi N, Seghetti P, Mercati M, Tognetti A. A smoothed boundary bidomain model for cardiac simulations in anatomically detailed geometries. PLoS One 2023; 18:e0286577. [PMID: 37294777 PMCID: PMC10256234 DOI: 10.1371/journal.pone.0286577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/18/2023] [Indexed: 06/11/2023] Open
Abstract
This manuscript presents a novel finite difference method to solve cardiac bidomain equations in anatomical models of the heart. The proposed method employs a smoothed boundary approach that represents the boundaries between the heart and the surrounding medium as a spatially diffuse interface of finite thickness. The bidomain boundary conditions are implicitly implemented in the smoothed boundary bidomain equations presented in the manuscript without the need of a structured mesh that explicitly tracks the heart-torso boundaries. We reported some significant examples assessing the method's accuracy using nontrivial test geometries and demonstrating the applicability of the method to complex anatomically detailed human cardiac geometries. In particular, we showed that our approach could be employed to simulate cardiac defibrillation in a human left ventricle comprising fiber architecture. The main advantage of the proposed method is the possibility of implementing bidomain boundary conditions directly on voxel structures, which makes it attractive for three dimensional, patient specific simulations based on medical images. Moreover, given the ease of implementation, we believe that the proposed method could provide an interesting and feasible alternative to finite element methods, and could find application in future cardiac research guiding electrotherapy with computational models.
Collapse
Affiliation(s)
- Niccolò Biasi
- Information Engineering Department, University of Pisa, Pisa, Italy
| | - Paolo Seghetti
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Matteo Mercati
- Information Engineering Department, University of Pisa, Pisa, Italy
| | - Alessandro Tognetti
- Information Engineering Department, University of Pisa, Pisa, Italy
- Research Centre “E. Piaggio”, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Han H, Cheng LK, Paskaranandavadivel N. High-resolution in vivo monophasic gastric slow waves to quantify activation and recovery profiles. Neurogastroenterol Motil 2022; 34:e14422. [PMID: 35726361 PMCID: PMC10078408 DOI: 10.1111/nmo.14422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Gastric bio-electrical slow waves are, in part, responsible for coordinating motility. Spatial dynamics about the recovery phase of slow wave recordings have not been thoroughly investigated due to the lack of suitable experimental techniques. METHODS A high-resolution multi-channel suction electrode array was developed and applied in pigs to acquire monophasic gastric slow waves. Signal characteristics were verified against biphasic slow waves recorded by conventional surface contact electrode arrays. Monophasic slow wave events were categorized into two groups based on their morphological characteristics, after which their amplitudes, activation to recovery intervals, and gradients were quantified and compared. Coverage of activation and recovery maps for both electrode types were calculated and compared. KEY RESULTS Monophasic slow waves had a more pronounced recovery phase with a higher gradient than biphasic slow waves (0.5 ± 0.1 vs. 0.3 ± 0.1 mV·s-1 ). Between the 2 groups of monophasic slow waves, there was a significant difference in amplitude (1.8 ± 0.5 vs. 1.1 ± 0.2 mV), activation time gradient (0.8 ± 0.2 vs. 0.3 ± 0.1 mV·s-1 ), and recovery time gradient (0.5 ± 0.1 vs. 0.3 ± 0.1 mV·s-1 ). For the suction and conventional contact electrode arrays, the recovery maps had reduced coverage compared to the activation maps (4 ± 6% and 43 ± 11%, respectively). CONCLUSIONS AND INFERENCES A novel high-resolution multi-channel suction electrode array was developed and applied in vivo to record monophasic gastric slow waves. Slow wave recovery phase analysis could be performed more efficiently on monophasic signals compared with biphasic signals, due to the more identifiable recovery phases.
Collapse
Affiliation(s)
- Henry Han
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, The University of Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
4
|
Biasi N, Tognetti A. A computationally efficient dynamic model of human epicardial tissue. PLoS One 2021; 16:e0259066. [PMID: 34699557 PMCID: PMC8547700 DOI: 10.1371/journal.pone.0259066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
We present a new phenomenological model of human ventricular epicardial cells and we test its reentry dynamics. The model is derived from the Rogers-McCulloch formulation of the FitzHugh-Nagumo equations and represents the total ionic current divided into three contributions corresponding to the excitatory, recovery and transient outward currents. Our model reproduces the main characteristics of human epicardial tissue, including action potential amplitude and morphology, upstroke velocity, and action potential duration and conduction velocity restitution curves. The reentry dynamics is stable, and the dominant period is about 270 ms, which is comparable to clinical values. The proposed model is the first phenomenological model able to accurately resemble human experimental data by using only 3 state variables and 17 parameters. Indeed, it is more computationally efficient than existing models (i.e., almost two times faster than the minimal ventricular model). Beyond the computational efficiency, the low number of parameters facilitates the process of fitting the model to the experimental data.
Collapse
Affiliation(s)
- Niccoló Biasi
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Alessandro Tognetti
- Department of Information Engineering, University of Pisa, Pisa, Italy.,Research Centre "E. Piaggio", University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Berman JP, Kaboudian A, Uzelac I, Iravanian S, Iles T, Iaizzo PA, Lim H, Smolka S, Glimm J, Cherry EM, Fenton FH. Interactive 3D Human Heart Simulations on Segmented Human MRI Hearts. COMPUTING IN CARDIOLOGY 2021; 48:10.23919/cinc53138.2021.9662948. [PMID: 35754523 PMCID: PMC9228622 DOI: 10.23919/cinc53138.2021.9662948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding cardiac arrhythmic mechanisms and developing new strategies to control and terminate them using computer simulations requires realistic physiological cell models with anatomically accurate heart structures. Furthermore, numerical simulations must be fast enough to study and validate model and structure parameters. Here, we present an interactive parallel approach for solving detailed cell dynamics in high-resolution human heart structures with a local PC's GPU. In vitro human heart MRI scans were manually segmented to produce 3D structures with anatomically realistic electrophysiology. The Abubu.js library was used to create an interactive code to solve the OVVR human ventricular cell model and the FDA extension of the model in the human MRI heart structures, allowing the simulation of reentrant waves and investigation of their dynamics in real time. Interactive simulations of a physiological cell model in a detailed anatomical human heart reveals propagation of waves through the fine structures of the trabeculae and pectinate muscle that can perpetuate arrhythmias, thereby giving new insights into effects that may need to be considered when planning ablation and other defibrillation methods.
Collapse
Affiliation(s)
- John P Berman
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Abouzar Kaboudian
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Tinen Iles
- Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Paul A Iaizzo
- Medical School, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Lim WW, Neo M, Thanigaimani S, Kuklik P, Ganesan AN, Lau DH, Tsoutsman T, Kalman JM, Semsarian C, Saint DA, Sanders P. Electrophysiological and Structural Remodeling of the Atria in a Mouse Model of Troponin-I Mutation Linked Hypertrophic Cardiomyopathy: Implications for Atrial Fibrillation. Int J Mol Sci 2021; 22:ijms22136941. [PMID: 34203369 PMCID: PMC8267948 DOI: 10.3390/ijms22136941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited cardiac disorder affecting one in 500 of the general population. Atrial fibrillation (AF) is the most common arrhythmia in patients with HCM. We sought to characterize the atrial electrophysiological and structural substrate in young and aging Gly203Ser cardiac troponin-I transgenic (HCM) mice. At 30 weeks and 50 weeks of age (n = 6 per strain each group), the left atrium was excised and placed on a multi-electrode array (MEA) for electrophysiological study; subsequent histological analyses and plasma samples were analyzed for biomarkers of extracellular matrix remodeling and cell adhesion and inflammation. Wild-type mice of matched ages were included as controls. Young HCM mice demonstrated significantly shortened atrial action potential duration (APD), increased conduction heterogeneity index (CHI), increased myocyte size, and increased interstitial fibrosis without changes in effective refractory periods (ERP), conduction velocity (CV), inflammatory infiltrates, or circulating markers of extracellular matrix remodeling and inflammation. Aging HCM mice demonstrated aggravated changes in atria electrophysiology and structural remodeling as well as increased circulating matrix metalloproteinases (MMP)-2, MMP-3, and VCAM-1 levels. This model of HCM demonstrates an underlying atrial substrate that progresses with age and may in part be responsible for the greater propensity for AF in HCM.
Collapse
Affiliation(s)
- Wei-Wen Lim
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (W.-W.L.); (M.N.); (S.T.); (P.K.); (A.N.G.); (D.H.L.)
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Melissa Neo
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (W.-W.L.); (M.N.); (S.T.); (P.K.); (A.N.G.); (D.H.L.)
| | - Shivshankar Thanigaimani
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (W.-W.L.); (M.N.); (S.T.); (P.K.); (A.N.G.); (D.H.L.)
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry and The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Pawel Kuklik
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (W.-W.L.); (M.N.); (S.T.); (P.K.); (A.N.G.); (D.H.L.)
- Department of Cardiology, Asklepios Klinik St. Georg, 20099 Hamburg, Germany
| | - Anand N. Ganesan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (W.-W.L.); (M.N.); (S.T.); (P.K.); (A.N.G.); (D.H.L.)
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Dennis H. Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (W.-W.L.); (M.N.); (S.T.); (P.K.); (A.N.G.); (D.H.L.)
| | - Tatiana Tsoutsman
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute and the University of Sydney, Camperdown, NSW 2050, Australia; (T.T.); (C.S.)
| | - Jonathan M. Kalman
- Department of Cardiology, Royal Melbourne Hospital, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute and the University of Sydney, Camperdown, NSW 2050, Australia; (T.T.); (C.S.)
| | - David A. Saint
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (W.-W.L.); (M.N.); (S.T.); (P.K.); (A.N.G.); (D.H.L.)
- Correspondence: (D.A.S.); (P.S.); Tel.: +618-8222-2723 (P.S.)
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (W.-W.L.); (M.N.); (S.T.); (P.K.); (A.N.G.); (D.H.L.)
- Correspondence: (D.A.S.); (P.S.); Tel.: +618-8222-2723 (P.S.)
| |
Collapse
|
7
|
Building Models of Patient-Specific Anatomy and Scar Morphology from Clinical MRI Data. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Hazim A, Belhamadia Y, Dubljevic S. A Simulation Study of the Role of Mechanical Stretch in Arrhythmogenesis during Cardiac Alternans. Biophys J 2020; 120:109-121. [PMID: 33248131 PMCID: PMC7820729 DOI: 10.1016/j.bpj.2020.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
The deformation of the heart tissue due to the contraction can modulate the excitation, a phenomenon referred to as mechanoelectrical feedback (MEF), via stretch-activated channels. The effects of MEF on the electrophysiology at high pacing rates are shown to be proarrhythmic in general. However, more studies need to be done to elucidate the underlying mechanism. In this work, we investigate the effects of MEF on cardiac alternans, which is an alternation in the width of the action potential that typically occurs when the heart is paced at high rates, using a biophysically detailed electromechanical model of cardiac tissue. We observe that the transition from spatially concordant alternans to spatially discordant alternans, which is more arrhythmogenic than concordant alternans, may occur in the presence of MEF and when its strength is sufficiently large. We show that this transition is due to the increase of the dispersion of conduction velocity. In addition, our results also show that the MEF effects, depending on the stretch-activated channels’ conductances and reversal potentials, can result in blocking action potential propagation.
Collapse
Affiliation(s)
- Azzam Hazim
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Youssef Belhamadia
- Department of Mathematics and Statistics, American University of Sharjah, Sharjah, United Arab Emirates
| | - Stevan Dubljevic
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Jeong DU, Lim KM. Prediction of Cardiac Mechanical Performance From Electrical Features During Ventricular Tachyarrhythmia Simulation Using Machine Learning Algorithms. Front Physiol 2020; 11:591681. [PMID: 33329041 PMCID: PMC7732497 DOI: 10.3389/fphys.2020.591681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
In ventricular tachyarrhythmia, electrical instability features including action potential duration, dominant frequency, phase singularity, and filaments are associated with mechanical contractility. However, there are insufficient studies on estimated mechanical contractility based on electrical features during ventricular tachyarrhythmia using a stochastic model. In this study, we predicted cardiac mechanical performance from features of electrical instability during ventricular tachyarrhythmia simulation using machine learning algorithms, including support vector regression (SVR) and artificial neural network (ANN) models. We performed an electromechanical tachyarrhythmia simulation and extracted 12 electrical instability features and two mechanical properties, including stroke volume and the amplitude of myocardial tension (ampTens). We compared predictive performance according to kernel types of the SVR model and the number of hidden layers of the ANN model. In the SVR model, the prediction accuracies of stroke volume and ampTens were the highest when using the polynomial kernel and linear kernel, respectively. The predictive performance of the ANN model was better than that of the SVR model. The prediction accuracies were the highest when the ANN model consisted of three hidden layers. Accordingly, we propose the ANN model with three hidden layers as an optimal model for predicting cardiac mechanical contractility in ventricular tachyarrhythmia. The results of this study are expected to be used to indirectly estimate the hemodynamic response from the electrical cardiac map measured by the optical mapping system during cardiac surgery, as well as cardiac contractility under normal sinus rhythm conditions.
Collapse
Affiliation(s)
- Da Un Jeong
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Ki Moo Lim
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea.,Computational Medicine Lab, Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| |
Collapse
|
10
|
Cusimano N, Gizzi A, Fenton F, Filippi S, Gerardo-Giorda L. Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: a quantitative study. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION 2020; 84:105152. [PMID: 32863678 PMCID: PMC7453933 DOI: 10.1016/j.cnsns.2019.105152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microscopic structural features of cardiac tissue play a fundamental role in determining complex spatio-temporal excitation dynamics at the macroscopic level. Recent efforts have been devoted to the development of mathematical models accounting for non-local spatio-temporal coupling able to capture these complex dynamics without the need of resolving tissue heterogeneities down to the micro-scale. In this work, we analyse in detail several important aspects affecting the overall predictive power of these modelling tools and provide some guidelines for an effective use of space-fractional models of cardiac electrophysiology in practical applications. Through an extensive computational study in simplified computational domains, we highlight the robustness of models belonging to different categories, i.e., physiological and phenomenological descriptions, against the introduction of non-locality, and lay down the foundations for future research and model validation against experimental data. A modern genetic algorithm framework is used to investigate proper parameterisations of the considered models, and the crucial role played by the boundary assumptions in the considered settings is discussed. Several numerical results are provided to support our claims.
Collapse
Affiliation(s)
- N. Cusimano
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain
| | - A. Gizzi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, Italy
| | - F.H. Fenton
- School of Physics, Georgia Insitute of Technology, 837 State Street NW, Atlanta, GA 30332, United States
| | - S. Filippi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, Italy
| | - L. Gerardo-Giorda
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain
| |
Collapse
|
11
|
Cincotti A, Maucher F, Evans D, Chapin BM, Horner K, Bromley E, Lobb A, Steed JW, Sutcliffe P. Threaded Rings that Swim in Excitable Media. PHYSICAL REVIEW LETTERS 2019; 123:258102. [PMID: 31922769 DOI: 10.1103/physrevlett.123.258102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Cardiac tissue and the Belousov-Zhabotinsky reaction provide two notable examples of excitable media that support scroll waves, in which a filament core is the source of spiral waves of excitation. Here we consider a novel topological configuration in which a closed filament loop, known as a scroll ring, is threaded by a pair of counterrotating filaments that are perpendicular to the plane of the ring and end on the boundary of a thin medium. We simulate the dynamics of this threaded ring (thring) in the photosensitive Belousov-Zhabotinsky excitable medium, using the modified Oregonator reaction-diffusion equations. These computations reveal that the threading topology induces an exotic motion in which the thring swims in the plane of the ring. We propose a light templating protocol to create a thring in the photosensitive Belousov-Zhabotinsky medium and provide experimental confirmation that this protocol indeed yields a thring.
Collapse
Affiliation(s)
- Antonio Cincotti
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Fabian Maucher
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK 8000 Aarhus, Denmark
- Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - David Evans
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Brette M Chapin
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Kate Horner
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Elizabeth Bromley
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Andrew Lobb
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Jonathan W Steed
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Paul Sutcliffe
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
12
|
Campos FO, Orini M, Taggart P, Hanson B, Lambiase PD, Porter B, Rinaldi CA, Gill J, Bishop MJ. Characterizing the clinical implementation of a novel activation-repolarization metric to identify targets for catheter ablation of ventricular tachycardias using computational models. Comput Biol Med 2019; 108:263-275. [PMID: 31009930 PMCID: PMC6538827 DOI: 10.1016/j.compbiomed.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 11/24/2022]
Abstract
Identification of targets for catheter ablation of ventricular tachycardias (VTs) remains a significant challenge. VTs are often driven by re-entrant circuits resulting from a complex interaction between the front (activation) and tail (repolarization) of the electrical wavefront. Most mapping techniques do not take into account the tissue repolarization which may hinder the detection of ablation targets. The re-entry vulnerability index (RVI), a recently proposed mapping procedure, incorporates both activation and repolarization times to uncover VT circuits. The method showed potential in a series of experiments, but it still requires further development to enable its incorporation into a clinical protocol. Here, in-silico experiments were conducted to thoroughly assess RVI maps constructed under clinically-relevant mapping conditions. Within idealized as well as anatomically realistic infarct models, we show that parameters of the algorithm such as the search radius can significantly alter the specificity and sensitivity of the RVI maps. When constructed on sparse grids obtained following various placements of clinical recording catheters, RVI maps can identify vulnerable regions as long as two electrodes were placed on both sides of the line of block. Moreover, maps computed during pacing without inducing VT can reveal areas of abnormal repolarization and slow conduction but not directly vulnerability. In conclusion, the RVI algorithm can detect re-entrant circuits during VT from low resolution mapping grids resembling the clinical setting. Furthermore, RVI maps may provide information about the underlying tissue electrophysiology to guide catheter ablation without the need of inducing potentially harmful VT during the clinical procedure. Finally, the ability of the RVI maps to identify vulnerable regions with specificity in high resolution computer models could potentially improve the prediction of optimal ablation targets of simulation-based strategies. Safe and accurate detection of targets for catheter ablation remains a challenge. We conducted a thorough assessment of the Re-entry Vulnerability Index (RVI). Parameters of the algorithm can alter the specificity and sensitivity of RVI maps. When constructed on sparse grids RVI maps could still detect arrhythmogenic sites. In absence of arrhythmia, RVI maps revealed abnormal sites, but not vulnerability.
Collapse
Affiliation(s)
- Fernando O Campos
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Michele Orini
- The Heart Hospital, University College London, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Peter Taggart
- The Heart Hospital, University College London, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ben Hanson
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Electrophysiology Department, Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Bradley Porter
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | | | - Jaswinder Gill
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom. https://kclpure.kcl.ac.uk/portal/martin.bishop.html
| |
Collapse
|
13
|
Bowler LA, Gavaghan DJ, Mirams GR, Whiteley JP. Representation of Multiple Cellular Phenotypes Within Tissue-Level Simulations of Cardiac Electrophysiology. Bull Math Biol 2019; 81:7-38. [PMID: 30291590 PMCID: PMC6320359 DOI: 10.1007/s11538-018-0516-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Distinct electrophysiological phenotypes are exhibited by biological cells that have differentiated into particular cell types. The usual approach when simulating the cardiac electrophysiology of tissue that includes different cell types is to model the different cell types as occupying spatially distinct yet coupled regions. Instead, we model the electrophysiology of well-mixed cells by using homogenisation to derive an extension to the commonly used monodomain or bidomain equations. These new equations permit spatial variations in the distribution of the different subtypes of cells and will reduce the computational demands of solving the governing equations. We validate the homogenisation computationally, and then use the new model to explain some experimental observations from stem cell-derived cardiomyocyte monolayers.
Collapse
Affiliation(s)
- Louise A Bowler
- Department of Computer Science, University of Oxford, Oxford, UK
| | - David J Gavaghan
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
14
|
Clayton RH. Dispersion of Recovery and Vulnerability to Re-entry in a Model of Human Atrial Tissue With Simulated Diffuse and Focal Patterns of Fibrosis. Front Physiol 2018; 9:1052. [PMID: 30131713 PMCID: PMC6090998 DOI: 10.3389/fphys.2018.01052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/16/2018] [Indexed: 12/03/2022] Open
Abstract
Fibrosis in atrial tissue can act as a substrate for persistent atrial fibrillation, and can be focal or diffuse. Regions of fibrosis are associated with slowed or blocked conduction, and several approaches have been used to model these effects. In this study a computational model of 2D atrial tissue was used to investigate how the spatial scale of regions of simulated fibrosis influenced the dispersion of action potential duration (APD) and vulnerability to re-entry in simulated normal human atrial tissue, and human tissue that has undergone remodeling as a result of persistent atrial fibrillation. Electrical activity was simulated in a 10 × 10 cm square 2D domain, with a spatially varying diffusion coefficient as described below. Cellular electrophysiology was represented by the Courtemanche model for human atrial cells, with the model parameters set for normal and remodeled cells. The effect of fibrosis was modeled with a smoothly varying diffusion coefficient, obtained from sampling a Gaussian random field (GRF) with length scales of between 1.25 and 10.0 mm. Twenty samples were drawn from each field, and used to allocate a value of diffusion coefficient between 0.05 and 0.2 mm2/ms. Dispersion of APD was assessed in each sample by pacing at a cycle length of 1,000 ms, followed by a premature beat with a coupling interval of 400 ms. Vulnerability to re-entry was assessed with an aggressive pacing protocol with pacing cycle lengths decreasing from 450 to 250 ms in 25 ms intervals for normal tissue and 300–150 ms for remodeled tissue. Simulated fibrosis at smaller spatial scales tended to lengthen APD, increase APD dispersion, and increase vulnerability to sustained re-entry relative to fibrosis at larger spatial scales. This study shows that when fibrosis is represented by smoothly varying tissue diffusion, the spatial scale of fibrosis has important effects on both dispersion of recovery and vulnerability to re-entry.
Collapse
Affiliation(s)
- Richard H Clayton
- Department of Computer Science, Insigneo Institute for in-silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Gokhale TA, Asfour H, Verma S, Bursac N, Henriquez CS. Microheterogeneity-induced conduction slowing and wavefront collisions govern macroscopic conduction behavior: A computational and experimental study. PLoS Comput Biol 2018; 14:e1006276. [PMID: 30011279 PMCID: PMC6062105 DOI: 10.1371/journal.pcbi.1006276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 07/26/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022] Open
Abstract
The incidence of cardiac arrhythmias is known to be associated with tissue heterogeneities including fibrosis. However, the impact of microscopic structural heterogeneities on conduction in excitable tissues remains poorly understood. In this study, we investigated how acellular microheterogeneities affect macroscopic conduction under conditions of normal and reduced excitability by utilizing a novel platform of paired in vitro and in silico studies to examine the mechanisms of conduction. Regular patterns of nonconductive micro-obstacles were created in confluent monolayers of the previously described engineered-excitable Ex293 cell line. Increasing the relative ratio of obstacle size to intra-obstacle strand width resulted in significant conduction slowing up to 23.6% and a significant increase in wavefront curvature anisotropy, a measure of spatial variation in wavefront shape. Changes in bulk electrical conductivity and in path tortuosity were insufficient to explain these observed macroscopic changes. Rather, microscale behaviors including local conduction slowing due to microscale branching, and conduction acceleration due to wavefront merging were shown to contribute to macroscopic phenomena. Conditions of reduced excitability led to further conduction slowing and a reversal of wavefront curvature anisotropy due to spatially non-uniform effects on microscopic slowing and acceleration. This unique experimental and computation platform provided critical mechanistic insights in the impact of microscopic heterogeneities on macroscopic conduction, pertinent to settings of fibrotic heart disease. It is well known that perturbations in the heart structure are associated with the initiation and maintenance of clinically significant cardiac arrhythmia. While previous studies have examined how single structural perturbations affect local electrical conduction, our understanding of how numerous microscopic heterogeneities act in aggregate to alter macroscopic electrical behavior is limited. In this study, we utilized simplified engineered excitable cells that contain the minimal machinery of excitability and can be directly computationally modeled. By pairing experimental and computational studies, we showed that the microscopic branching and collisions of electrical waves slow and speed conduction, respectively, resulting in macroscopic changes in the speed and pattern of electrical activation. These microscale behaviors are significantly altered under reduced excitability, resulting in exaggerated collision effects. Overall, this study helps improve our understanding of how microscopic structural heterogeneities in excitable tissue lead to abnormal action potential propagation, conducive to arrhythmias.
Collapse
Affiliation(s)
- Tanmay A. Gokhale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Huda Asfour
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Shravan Verma
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail: (NB); (CSH)
| | - Craig S. Henriquez
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail: (NB); (CSH)
| |
Collapse
|
16
|
Wilson D, Ermentrout B. Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans. Biophys J 2017; 113:2552-2572. [PMID: 29212008 DOI: 10.1016/j.bpj.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Depressed heart rate variability is a well-established risk factor for sudden cardiac death in survivors of acute myocardial infarction and for those with congestive heart failure. Although measurements of heart rate variability provide a valuable prognostic tool, it is unclear whether reduced heart rate variability itself is proarrhythmic or if it simply correlates with the severity of autonomic nervous system dysfunction. In this work, we investigate a possible mechanism by which heart rate variability could protect against cardiac arrhythmia. Specifically, in numerical simulations, we observe an inverse relationship between the variance of stochastic pacing and the occurrence of spatially discordant alternans, an arrhythmia that is widely believed to facilitate the development of cardiac fibrillation. By analyzing the effects of conduction velocity restitution, cellular dynamics, electrotonic coupling, and stochastic pacing on the nodal dynamics of spatially discordant alternans, we provide intuition for this observed behavior and propose control strategies to inhibit discordant alternans.
Collapse
Affiliation(s)
- Dan Wilson
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Mayer A, Bittihn P, Luther S. Complex restitution behavior and reentry in a cardiac tissue model for neonatal mice. Physiol Rep 2017; 5:5/19/e13449. [PMID: 28989116 PMCID: PMC5641936 DOI: 10.14814/phy2.13449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 11/24/2022] Open
Abstract
Spatiotemporal dynamics in cardiac tissue emerging from the coupling of individual cardiomyocytes underlie the heart's normal rhythm as well as undesired and possibly life-threatening arrhythmias. While single cells and their transmembrane currents have been studied extensively, systematically investigating spatiotemporal dynamics is complicated by the nontrivial relationship between single-cell and emergent tissue properties. Mathematical models have been employed to bridge this gap and contribute to a deepened understanding of the onset, development, and termination of arrhythmias. However, no such tissue-level model currently exists for neonatal mice. Here, we build on a recent single-cell model of neonatal mouse cardiomyocytes by Wang and Sobie (Am. J. Physiol. Heart Circ. Physiol 294:H2565) to predict properties that are commonly used to gauge arrhythmogenicity of cardiac substrates. We modify the model to yield well-defined behavior for common experimental protocols and construct a spatially extended version to study emergent tissue dynamics. We find a complex action potential duration (APD) restitution behavior characterized by a nonmonotonic dependence on pacing frequency. Electrotonic coupling in tissue leads not only to changes in action potential morphology but can also induce spatially concordant and discordant alternans not observed in the single-cell model. In two-dimensional tissue, our results show that the model supports stable functional reentry, whose frequency is in good agreement with that observed in adult mice. Our results can be used to further constrain and validate the mathematical model of neonatal mouse cardiomyocytes with future experiments.
Collapse
Affiliation(s)
- Andreas Mayer
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK) Partner Site Göttingen, Göttingen, Germany.,Institute for Nonlinear Dynamics Georg-August-Universität Göttingen, Göttingen, Germany.,Institute of Pharmacology and Toxicology University Medical Center, Göttingen, Germany.,Department of Physics and Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
18
|
Comlekoglu T, Weinberg SH. Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity. CHAOS (WOODBURY, N.Y.) 2017; 27:093904. [PMID: 28964143 DOI: 10.1063/1.4999351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiac memory is the dependence of electrical activity on the prior history of one or more system state variables, including transmembrane potential (Vm), ionic current gating, and ion concentrations. While prior work has represented memory either phenomenologically or with biophysical detail, in this study, we consider an intermediate approach of a minimal three-variable cardiomyocyte model, modified with fractional-order dynamics, i.e., a differential equation of order between 0 and 1, to account for history-dependence. Memory is represented via both capacitive memory, due to fractional-order Vm dynamics, that arises due to non-ideal behavior of membrane capacitance; and ionic current gating memory, due to fractional-order gating variable dynamics, that arises due to gating history-dependence. We perform simulations for varying Vm and gating variable fractional-orders and pacing cycle length and measure action potential duration (APD) and incidence of alternans, loss of capture, and spontaneous activity. In the absence of ionic current gating memory, we find that capacitive memory, i.e., decreased Vm fractional-order, typically shortens APD, suppresses alternans, and decreases the minimum cycle length (MCL) for loss of capture. However, in the presence of ionic current gating memory, capacitive memory can prolong APD, promote alternans, and increase MCL. Further, we find that reduced Vm fractional order (typically less than 0.75) can drive phase 4 depolarizations that promote spontaneous activity. Collectively, our results demonstrate that memory reproduced by a fractional-order model can play a role in alternans formation and pacemaking, and in general, can greatly increase the range of electrophysiological characteristics exhibited by a minimal model.
Collapse
Affiliation(s)
- T Comlekoglu
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| | - S H Weinberg
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| |
Collapse
|
19
|
Aswath Kumar AK, Drahi A, Jacquemet V. Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling. Comput Biol Med 2016; 81:55-63. [PMID: 28012295 DOI: 10.1016/j.compbiomed.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Repolarization gradients contribute to arrhythmogenicity. In reaction-diffusion models of cardiac tissue, heterogeneities in action potential duration (APD) can be created by locally modifying an intrinsic membrane kinetics parameter. Electrotonic coupling, however, acts as a confounding factor that modulates APD dispersion. METHOD We developed an algorithm based on a quasi-Newton method that iteratively adjusts the spatial distribution of a membrane parameter to reproduce a pre-defined target APD map in a coupled tissue. The method assumes that the relation between the adjustable parameter and APD is bijective in an isolated cell. Each iteration of the algorithm involved simulating the cardiac reaction-diffusion system with the updated parameter profile for one beat and extracting the APD map. The algorithm was extended to simultaneous estimation of two parameter profiles based on two APD maps at different repolarization thresholds. RESULTS The method was validated in 1D, 2D and 3D atrial tissues using synthetic target APD maps with controllable total variation and maximum APD gradient. The adjustable parameter was local acetylcholine concentration. The iterations converged provided that APD gradients were not too steep. Convergence was found to be faster 2-5 iterations) when the maximal gradient was less steep, when APD range was smaller and when tissue conductivity was reduced. CONCLUSION This algorithm provides a tool to automatically generate arrhythmogenic substrates with controllable repolarization gradients and possibly incorporate experimental APD maps into computer models.
Collapse
Affiliation(s)
- Akshay Kota Aswath Kumar
- Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada
| | - Angelina Drahi
- Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada
| | - Vincent Jacquemet
- Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada.
| |
Collapse
|
20
|
Ziepke A, Martens S, Engel H. Wave propagation in spatially modulated tubes. J Chem Phys 2016; 145:094108. [DOI: 10.1063/1.4962173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- A. Ziepke
- Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin, Germany
| | - S. Martens
- Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin, Germany
| | - H. Engel
- Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
21
|
Lombardo DM, Fenton FH, Narayan SM, Rappel WJ. Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties. PLoS Comput Biol 2016; 12:e1005060. [PMID: 27494252 PMCID: PMC4975409 DOI: 10.1371/journal.pcbi.1005060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022] Open
Abstract
Computer studies are often used to study mechanisms of cardiac arrhythmias, including atrial fibrillation (AF). A crucial component in these studies is the electrophysiological model that describes the membrane potential of myocytes. The models vary from detailed, describing numerous ion channels, to simplified, grouping ionic channels into a minimal set of variables. The parameters of these models, however, are determined across different experiments in varied species. Furthermore, a single set of parameters may not describe variations across patients, and models have rarely been shown to recapitulate critical features of AF in a given patient. In this study we develop physiologically accurate computational human atrial models by fitting parameters of a detailed and of a simplified model to clinical data for five patients undergoing ablation therapy. Parameters were simultaneously fitted to action potential (AP) morphology, action potential duration (APD) restitution and conduction velocity (CV) restitution curves in these patients. For both models, our fitting procedure generated parameter sets that accurately reproduced clinical data, but differed markedly from published sets and between patients, emphasizing the need for patient-specific adjustment. Both models produced two-dimensional spiral wave dynamics for that were similar for each patient. These results show that simplified, computationally efficient models are an attractive choice for simulations of human atrial electrophysiology in spatially extended domains. This study motivates the development and validation of patient-specific model-based mechanistic studies to target therapy.
Collapse
Affiliation(s)
- Daniel M. Lombardo
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Flavio H. Fenton
- School of Physics, Georgia Tech University, Atlanta, Georgia, United States of America
| | - Sanjiv M. Narayan
- Department of Medicine, Stanford University, Palo Alto, California, United States of America
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Connolly AJ, Bishop MJ. Computational Representations of Myocardial Infarct Scars and Implications for Arrhythmogenesis. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:27-40. [PMID: 27486348 PMCID: PMC4962962 DOI: 10.4137/cmc.s39708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Image-based computational modeling is becoming an increasingly used clinical tool to provide insight into the mechanisms of reentrant arrhythmias. In the context of ischemic heart disease, faithful representation of the electrophysiological properties of the infarct region within models is essential, due to the scars known for arrhythmic properties. Here, we review the different computational representations of the infarcted region, summarizing the experimental measurements upon which they are based. We then focus on the two most common representations of the scar core (complete insulator or electrically passive tissue) and perform simulations of electrical propagation around idealized infarct geometries. Our simulations highlight significant differences in action potential duration and focal effective refractory period (ERP) around the scar, driven by differences in electrotonic loading, depending on the choice of scar representation. Finally, a novel mechanism for arrhythmia induction, following a focal ectopic beat, is demonstrated, which relies on localized gradients in ERP directly caused by the electrotonic sink effects of the neighboring passive scar.
Collapse
Affiliation(s)
- Adam J Connolly
- Department of Imaging Sciences and Bioengineering, King's College London, St Thomas' Hospital, London, UK
| | - Martin J Bishop
- Department of Imaging Sciences and Bioengineering, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
23
|
Martens S. Note: From reaction-diffusion systems to confined Brownian motion. J Chem Phys 2016; 145:016101. [PMID: 27394126 DOI: 10.1063/1.4955492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S Martens
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
24
|
Variability of Action Potentials Within and Among Cardiac Cell Clusters Derived from Human Embryonic Stem Cells. Sci Rep 2016; 6:18544. [PMID: 26729331 PMCID: PMC4700458 DOI: 10.1038/srep18544] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/19/2015] [Indexed: 12/12/2022] Open
Abstract
Electrophysiological variability in cardiomyocytes derived from pluripotent stem cells continues to be an impediment for their scientific and translational applications. We studied the variability of action potentials (APs) recorded from clusters of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using high-resolution optical mapping. Over 23,000 APs were analyzed through four parameters: APD30, APD80, triangulation and fractional repolarization. Although measures were taken to reduce variability due to cell culture conditions and rate-dependency of APs, we still observed significant variability in APs among and within the clusters. However, similar APs were found in spatial locations with close proximity, and in some clusters formed distinct regions having different AP characteristics that were reflected as separate peaks in the AP parameter distributions, suggesting multiple electrophysiological phenotypes. Using a recently developed automated method to group cells based on their entire AP shape, we identified distinct regions of different phenotypes within single clusters and common phenotypes across different clusters when separating APs into 2 or 3 subpopulations. The systematic analysis of the heterogeneity and potential phenotypes of large populations of hESC-CMs can be used to evaluate strategies to improve the quality of pluripotent stem cell-derived cardiomyocytes for use in diagnostic and therapeutic applications and in drug screening.
Collapse
|
25
|
A simple analytical model of action potential duration profile in electrotonically-coupled cells. Math Biosci 2015; 272:92-9. [PMID: 26723277 DOI: 10.1016/j.mbs.2015.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/06/2015] [Accepted: 12/04/2015] [Indexed: 11/22/2022]
Abstract
Electrotonic interactions between cardiac cells modulate the dispersion of action potential duration (APD). This paper provides a complete mathematical analysis of a simple model of exponential-shaped repolarization in a network of electrotonically-coupled cells with different intrinsic APDs. The forward problem consists in computing the APD map in the coupled system from the intrinsic APD map. A closed-form algebraic formula is derived for the forward problem. The inverse problem, inferring the intrinsic APDs from an APD map, is proved to have a unique solution (if any). Perturbation analysis leads to an efficient and accurate Newton-based solver for this specific inverse problem. Finally, an analytical expression is obtained for the convolution filter that solves the forward problem in one dimension. This mathematical framework forms a solid theoretical basis for future development and validation of repolarization parameter estimation techniques in detailed models of cardiac tissue.
Collapse
|
26
|
On the Order of the Fractional Laplacian in Determining the Spatio-Temporal Evolution of a Space-Fractional Model of Cardiac Electrophysiology. PLoS One 2015; 10:e0143938. [PMID: 26629898 PMCID: PMC4668072 DOI: 10.1371/journal.pone.0143938] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 12/01/2022] Open
Abstract
Space-fractional operators have been used with success in a variety of practical applications to describe transport processes in media characterised by spatial connectivity properties and high structural heterogeneity altering the classical laws of diffusion. This study provides a systematic investigation of the spatio-temporal effects of a space-fractional model in cardiac electrophysiology. We consider a simplified model of electrical pulse propagation through cardiac tissue, namely the monodomain formulation of the Beeler-Reuter cell model on insulated tissue fibres, and obtain a space-fractional modification of the model by using the spectral definition of the one-dimensional continuous fractional Laplacian. The spectral decomposition of the fractional operator allows us to develop an efficient numerical method for the space-fractional problem. Particular attention is paid to the role played by the fractional operator in determining the solution behaviour and to the identification of crucial differences between the non-fractional and the fractional cases. We find a positive linear dependence of the depolarization peak height and a power law decay of notch and dome peak amplitudes for decreasing orders of the fractional operator. Furthermore, we establish a quadratic relationship in conduction velocity, and quantify the increasingly wider action potential foot and more pronounced dispersion of action potential duration, as the fractional order is decreased. A discussion of the physiological interpretation of the presented findings is made.
Collapse
|
27
|
Basis for the Induction of Tissue-Level Phase-2 Reentry as a Repolarization Disorder in the Brugada Syndrome. BIOMED RESEARCH INTERNATIONAL 2015; 2015:197586. [PMID: 26583094 PMCID: PMC4637010 DOI: 10.1155/2015/197586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 11/20/2022]
Abstract
Aims. Human action potentials in the Brugada syndrome have been characterized by delayed or even complete loss of dome formation, especially in the right ventricular epicardial layers. Such a repolarization pattern is believed to trigger phase-2 reentry (P2R); however, little is known about the conditions necessary for its initiation. This study aims to determine the specific mechanisms that facilitate P2R induction in Brugada-affected cardiac tissue in humans. Methods. Ionic models for Brugada syndrome in human epicardial cells were developed and used to study the induction of P2R in cables, sheets, and a three-dimensional model of the right ventricular free wall. Results. In one-dimensional cables, P2R can be induced by adjoining lost-dome and delayed-dome regions, as mediated by tissue excitability and transmembrane voltage profiles, and reduced coupling facilitates its induction. In two and three dimensions, sustained reentry can arise when three regions (delayed-dome, lost-dome, and normal epicardium) are present. Conclusions. Not only does P2R induction by Brugada syndrome require regions of action potential with delayed-dome and lost-dome, but in order to generate a sustained reentry from a triggered waveback multiple factors are necessary, including heterogeneity in action potential distribution, tissue coupling, direction of stimulation, the shape of the late plateau, the duration of lost-dome action potentials, and recovery of tissue excitability, which is predominantly modulated by tissue coupling.
Collapse
|
28
|
Connolly A, Trew ML, Smaill BH, Plank G, Bishop MJ. Local Gradients in Electrotonic Loading Modulate the Local Effective Refractory Period: Implications for Arrhythmogenesis in the Infarct Border Zone. IEEE Trans Biomed Eng 2015; 62:2251-2259. [PMID: 25872206 PMCID: PMC5395087 DOI: 10.1109/tbme.2015.2421296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ectopic electrical activity that originates in the peri-infarct region can give rise to potentially lethal re-entrant arrhythmias. The spatial variation in electrotonic loading that results from structural remodelling in the infarct border zone may increase the probability that focal activity will trigger electrical capture, but this has not previously been investigated systematically. This study uses in-silico experiments to examine the structural modulation of effective refractory period on ectopic beat capture. Informed by 3-D reconstructions of myocyte organization in the infarct border zone, a region of rapid tissue expansion is abstracted to an idealized representation. A novel metric is introduced that defines the local electrotonic loading as a function of passive tissue properties and boundary conditions. The effective refractory period correlates closely with local electrotonic loading, while the action potential duration, conduction, and upstroke velocity reduce in regions of increasing electrotonic load. In the presence of focal ectopic stimuli, spatial variation in effective refractory period can cause unidirectional conduction block providing a substrate for reentrant arrhythmias. Consequently, based on the observed results, a possible novel mechanism for arrhythmogenesis in the infarct border zone is proposed.
Collapse
Affiliation(s)
- Adam Connolly
- Department of Biomedical Engineering, Kings College London, London WC2R 2LS, U.K
| | - Mark L. Trew
- Auckland Bioengineering Institute, University of Auckland
| | | | - Gernot Plank
- Institute of Biophysics, Medical University of Graz
| | - Martin J. Bishop
- Department of Biomedical Engineering, Kings College London, London WC2R 2LS, U.K
| |
Collapse
|
29
|
Martens S, Löber J, Engel H. Front propagation in channels with spatially modulated cross section. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022902. [PMID: 25768565 DOI: 10.1103/physreve.91.022902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Propagation of traveling fronts in a three-dimensional channel with spatially varying cross section is reduced to an equivalent one-dimensional reaction-diffusion-advection equation with boundary-induced advection term. Treating the advection term as a weak perturbation, an equation of motion for the front position is derived. We analyze channels whose cross sections vary periodically with L along the propagation direction of the front. Taking the Schlögl model as a representative example, we calculate analytically the nonlinear dependence of the front velocity on the ratio L/l where l denotes the intrinsic front width. In agreement with finite-element simulations of the three-dimensional reaction-diffusion dynamics, our theoretical results predicts boundary-induced propagation failure for a finite range of L/l values. In particular, the existence of the upper bound of L/l can be completely understood based on the linear eikonal equation. Last, we demonstrate that the front velocity is determined by the suppressed diffusivity of the reactants for L≪l.
Collapse
Affiliation(s)
- S Martens
- Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin, Germany
| | - J Löber
- Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin, Germany
| | - H Engel
- Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
30
|
Bueno-Orovio A, Kay D, Grau V, Rodriguez B, Burrage K. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J R Soc Interface 2015; 11:20140352. [PMID: 24920109 PMCID: PMC4208367 DOI: 10.1098/rsif.2014.0352] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media.
Collapse
Affiliation(s)
- Alfonso Bueno-Orovio
- Oxford Centre for Collaborative Applied Mathematics, University of Oxford, Oxford OX1 3LB, UK Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - David Kay
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Vicente Grau
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
31
|
Rodriguez B. In Silico Organ Modelling in Predicting Efficacy and Safety of New Medicines. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of new medicines faces important challenges due to difficulties in the assessment of their efficacy and their safety in the targeted human population. In silico approaches through the use of mathematical modelling and computer simulations are increasingly being used to overcome some of the limitations of current experimental methods used in the development of new medicines. This chapter describes state-of-the-art in silico approaches for the evaluation of the safety and efficacy of medicines targeting important causes of mortality such as cardiovascular disease. Firstly, we describe the in silico multi-scale mathematical models and simulation techniques required to describe drug-induced effects on physiological systems such as the heart from the subcellular to the whole organ level. Then we illustrate the power of in silico approaches used to augment experimental and clinical investigations, by providing the framework to unravel multi-scale mechanisms underlying variability in the response to medicines and to focus on effects in human rather than animal models. We devote the last part of the chapter to discussing the process of validation of in silico models and simulations, which is key in building up their credibility.
Collapse
Affiliation(s)
- Blanca Rodriguez
- Department of Computer Science, University of Oxford Parks Road Oxford OX1 3QD UK
| |
Collapse
|
32
|
Zhan HQ, Xia L, Shou GF, Zang YL, Liu F, Crozier S. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study. J Zhejiang Univ Sci B 2014; 15:225-42. [PMID: 24599687 DOI: 10.1631/jzus.b1300156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies.
Collapse
Affiliation(s)
- He-qing Zhan
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Walmsley J, Mirams GR, Pitt-Francis J, Rodriguez B, Burrage K. Application of stochastic phenomenological modelling to cell-to-cell and beat-to-beat electrophysiological variability in cardiac tissue. J Theor Biol 2014; 365:325-36. [PMID: 25451525 PMCID: PMC4271765 DOI: 10.1016/j.jtbi.2014.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 01/08/2023]
Abstract
Variability in the action potential of isolated myocytes and tissue samples is observed in experimental studies. Variability is manifested as both differences in the action potential (AP) morphology between cells (extrinsic variability), and also ‘intrinsic’ or beat-to-beat variability of repolarization (BVR) in the AP duration of each cell. We studied the relative contributions of experimentally recorded intrinsic and extrinsic variability to dispersion of repolarization in tissue. We developed four cell-specific parameterizations of a phenomenological stochastic differential equation AP model exhibiting intrinsic variability using APs recorded from isolated guinea pig ventricular myocytes exhibiting BVR. We performed simulations in tissue using the four different model parameterizations in the presence and the absence of both intrinsic and extrinsic variability. We altered the coupling of the tissue to determine how inter-cellular coupling affected the dispersion of the AP duration in tissue. Both intrinsic and extrinsic variability were gradually revealed by reduction of tissue coupling. However, the recorded extrinsic variability between individual myocytes produced a greater degree of dispersion in repolarization in tissue than the intrinsic variability of each myocyte. We modelled inter-cell and beat-to-beat repolarization variability in cardiomyocytes. We coupled the cells together into cardiac tissue. Reducing tissue coupling increased repolarization dispersion in tissue. Inter-cell variability had a greater effect on repolarization dispersion.
Collapse
Affiliation(s)
- John Walmsley
- Department of Computer Science, University of Oxford, Oxford, United Kingdom.
| | - Gary R Mirams
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Joe Pitt-Francis
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Oxford, United Kingdom; School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Bishop MJ, Connolly A, Plank G. Structural heterogeneity modulates effective refractory period: a mechanism of focal arrhythmia initiation. PLoS One 2014; 9:e109754. [PMID: 25291380 PMCID: PMC4188572 DOI: 10.1371/journal.pone.0109754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022] Open
Abstract
Reductions in electrotonic loading around regions of structural and electrophysiological heterogeneity may facilitate capture of focal triggered activity, initiating reentrant arrhythmias. How electrotonic loading, refractoriness and capture of focal ectopics depend upon the intricate nature of physiological structural anatomy, as well as pathological tissue remodelling, however, is not well understood. In this study, we performed computational bidomain simulations with anatomically-detailed models representing the rabbit left ventricle. We used these models to quantify the relationship between local structural anatomy and spatial heterogeneity in action potential (AP) characteristics, electrotonic currents and effective refractory periods (ERPs) under pacing and restitution protocols. Regions surrounding vessel cavities, in addition to tissue surfaces, had significantly lower peak downstream electrotonic currents than well coupled myocardium ( vs A/cm2), with faster maximum AP upstroke velocities ( vs mV/ms), although noticeably very similar APDs ( vs ms) and AP restitution properties. Despite similarities in APDs, ERPs in regions of low electrotonic load in the vicinity of surfaces, intramural vessel cavities and endocardial structures were up to ms shorter compared to neighbouring well-coupled tissue, leading to regions of sharp ERP gradients. Consequently, focal extra-stimuli timed within this window of ERP heterogeneity between neighbouring regions readily induced uni-directional block, inducing reentry. Most effective induction sites were within channels of low ERPs between large vessels and epicardium. Significant differences in ERP driven by reductions in electrotonic loading due to fine-scale physiological structural heterogeneity provides an important mechanism of capture of focal activity and reentry induction. Application to pathological ventricles, particularly myocardial infarction, will have important implications in anti-arrhythmia therapy.
Collapse
Affiliation(s)
- Martin J. Bishop
- Department of Biomedical Engineering, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
- * E-mail:
| | - Adam Connolly
- Department of Biomedical Engineering, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
- Oxford eResearch Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Elshrif MM, Cherry EM. A quantitative comparison of the behavior of human ventricular cardiac electrophysiology models in tissue. PLoS One 2014; 9:e84401. [PMID: 24416228 PMCID: PMC3885549 DOI: 10.1371/journal.pone.0084401] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
Numerical integration of mathematical models of heart cell electrophysiology provides an important computational tool for studying cardiac arrhythmias, but the abundance of available models complicates selecting an appropriate model. We study the behavior of two recently published models of human ventricular action potentials, the Grandi-Pasqualini-Bers (GPB) and the O'Hara-Virág-Varró-Rudy (OVVR) models, and compare the results with four previously published models and with available experimental and clinical data. We find the shapes and durations of action potentials and calcium transients differ between the GPB and OVVR models, as do the magnitudes and rate-dependent properties of transmembrane currents and the calcium transient. Differences also occur in the steady-state and S1–S2 action potential duration and conduction velocity restitution curves, including a maximum conduction velocity for the OVVR model roughly half that of the GPB model and well below clinical values. Between single cells and tissue, both models exhibit differences in properties, including maximum upstroke velocity, action potential amplitude, and minimum diastolic interval. Compared to experimental data, action potential durations for the GPB and OVVR models agree fairly well (although OVVR epicardial action potentials are shorter), but maximum slopes of steady-state restitution curves are smaller. Although studies show alternans in normal hearts, it occurs only in the OVVR model, and only for a narrow range of cycle lengths. We find initiated spiral waves do not progress to sustained breakup for either model. The dominant spiral wave period of the GPB model falls within clinically relevant values for ventricular tachycardia (VT), but for the OVVR model, the dominant period is longer than periods associated with VT. Our results should facilitate choosing a model to match properties of interest in human cardiac tissue and to replicate arrhythmia behavior more closely. Furthermore, by indicating areas where existing models disagree, our findings suggest avenues for further experimental work.
Collapse
Affiliation(s)
- Mohamed M. Elshrif
- B. Thomas Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Elizabeth M. Cherry
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Walton RD, Benson AP, Hardy MEL, White E, Bernus O. Electrophysiological and structural determinants of electrotonic modulation of repolarization by the activation sequence. Front Physiol 2013; 4:281. [PMID: 24115934 PMCID: PMC3792354 DOI: 10.3389/fphys.2013.00281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/18/2013] [Indexed: 11/14/2022] Open
Abstract
Spatial dispersion of repolarization is known to play an important role in arrhythmogenesis. Electrotonic modulation of repolarization by the activation sequence has been observed in some species and tissue preparations, but to varying extents. Our study sought to determine the mechanisms underlying species- and tissue-dependent electrotonic modulation of repolarization in ventricles. Epi-fluorescence optical imaging of whole rat hearts and pig left ventricular wedges were used to assess epicardial spatial activation and repolarization characteristics. Experiments were supported by computer simulations using realistic geometries. Tight coupling between activation times (AT) and action potential duration (APD) were observed in rat experiments but not in pig. Linear correlation analysis found slopes of −1.03 ± 0.59 and −0.26 ± 0.13 for rat and pig, respectively (p < 0.0001). In rat, maximal dispersion of APD was 11.0 ± 3.1 ms but dispersion of repolarization time (RT) was relatively homogeneous (8.2 ± 2.7, p < 0.0001). However, in pig no such difference was observed between the dispersion of APD and RT (17.8 ± 6.1 vs. 17.7 ± 6.5, respectively). Localized elevations of APD (12.9 ± 8.3%) were identified at ventricular insertion sites of rat hearts both in experiments and simulations. Tissue geometry and action potential (AP) morphology contributed significantly to determining influence of electrotonic modulation. Simulations of a rat AP in a pig geometry decreased the slope of AT and APD relationships by 70.6% whereas slopes were increased by 75.0% when implementing a pig AP in a rat geometry. A modified pig AP, shortened to match the rat APD, showed little coupling between AT and APD with greatly reduced slope compared to the rat AP. Electrotonic modulation of repolarization by the activation sequence is especially pronounced in small hearts with murine-like APs. Tissue architecture and AP morphology play an important role in electrotonic modulation of repolarization.
Collapse
Affiliation(s)
- Richard D Walton
- Faculty of Biological Sciences, Multidisciplinary Cardiovascular Research Centre, School of Biomedical Sciences, Institute of Membrane and Systems Biology, University of Leeds Leeds, UK ; Unité Inserm 1045, Centre de Recherche Cardio-Thoracique, Université Bordeaux Segalen Bordeaux, France ; L'Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux Bordeaux, France
| | | | | | | | | |
Collapse
|
37
|
Excitation-contraction coupling between human atrial myocytes with fibroblasts and stretch activated channel current: a simulation study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:238676. [PMID: 24000290 PMCID: PMC3755441 DOI: 10.1155/2013/238676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/13/2013] [Accepted: 07/13/2013] [Indexed: 12/23/2022]
Abstract
Myocytes have been regarded as the main objectives in most cardiac modeling studies and attracted a lot of attention. Connective tissue cells, such as fibroblasts (Fbs), also play crucial role in cardiac function. This study proposed an integrated myocyte-Isac-Fb electromechanical model to investigate the effect of Fbs and stretch activated ion channel current (Isac) on cardiac electrical excitation conduction and mechanical contraction. At the cellular level, an active Fb model was coupled with a human atrial myocyte electrophysiological model (including Isac) and a mechanical model. At the tissue level, electrical excitation conduction was coupled with an elastic mechanical model, in which finite difference method (FDM) was used to solve the electrical excitation equations, while finite element method (FEM) was used for the mechanics equations. The simulation results showed that Fbs and Isac coupling caused diverse effects on action potential morphology during repolarization, depolarized the resting membrane potential of the human atrial myocyte, slowed down wave propagation, and decreased strains in fibrotic tissue. This preliminary simulation study indicates that Fbs and Isac have important implications for modulating cardiac electromechanical behavior and should be considered in future cardiac modeling studies.
Collapse
|
38
|
Carusi A, Burrage K, Rodríguez B. Bridging experiments, models and simulations: an integrative approach to validation in computational cardiac electrophysiology. Am J Physiol Heart Circ Physiol 2012; 303:H144-55. [PMID: 22582088 DOI: 10.1152/ajpheart.01151.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational models in physiology often integrate functional and structural information from a large range of spatiotemporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and skepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present study aims at informing strategies for validation by elucidating the complex interrelations among experiments, models, and simulations in cardiac electrophysiology. We describe the processes, data, and knowledge involved in the construction of whole ventricular multiscale models of cardiac electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. We argue that validation is part of the whole MSE system and is contingent upon 1) understanding and coping with sources of biovariability; 2) testing and developing robust techniques and tools as a prerequisite to conducting physiological investigations; 3) defining and adopting standards to facilitate the interoperability of experiments, models, and simulations; 4) and understanding physiological validation as an iterative process that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both.
Collapse
|
39
|
Sánchez C, Corrias A, Bueno-Orovio A, Davies M, Swinton J, Jacobson I, Laguna P, Pueyo E, Rodríguez B. The Na+/K+ pump is an important modulator of refractoriness and rotor dynamics in human atrial tissue. Am J Physiol Heart Circ Physiol 2012; 302:H1146-59. [PMID: 22198174 PMCID: PMC3311461 DOI: 10.1152/ajpheart.00668.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/04/2011] [Indexed: 11/22/2022]
Abstract
Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na(+)/K(+) pump current (G(NaK)) as well as conductances of inward rectifier potassium current (G(K1)) and fast inward sodium current (G(Na)). G(NaK) plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). G(K1) controls DF through modulation of AP, APD restitution, RP, and CV. G(Na) is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na(+)/K(+) pump current in determining human atrial electrophysiology.
Collapse
Affiliation(s)
- Carlos Sánchez
- Communications Technology Group, I3A and IIS, University of Zaragoza, Zaragoza
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cherubini C, Filippi S, Gizzi A. Electroelastic unpinning of rotating vortices in biological excitable media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031915. [PMID: 22587131 DOI: 10.1103/physreve.85.031915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 02/22/2012] [Indexed: 05/31/2023]
Abstract
Spiral waves in excitable biological media are associated with pathological situations. In the heart an action potential vortex pinned by an obstacle has to be removed through defibrillation protocols fine-tuned theoretically by using electrophysiological nonlinear mathematical models. Cardiac tissue, however, is an electroelastic medium whose electrical properties are strongly affected by large deformations. In this paper we specifically investigate the electroelastic pinning-unpinning mechanism in order to include cardiac contraction in the preexisting theoretically modeled defibrillation scenarios. Based on a two-dimensional minimal electromechanical model, we show numerically the existence of an unpinning band characterized by the size of the obstacle, the pacing site, and the frequency. Similar numerical simulations, performed in the absence of elastic coupling, show small differences in comparison with the electroelastic studies, suggesting for this specific scenario of pinning-unpinning dynamics a nonprominent role of elasticity.
Collapse
Affiliation(s)
- C Cherubini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico, Rome, Italy
| | | | | |
Collapse
|