1
|
Effect of heterogeneous investment induced by payoff and emotion on cooperation in public goods games by considering memory decline effects. PLoS One 2023; 18:e0281648. [PMID: 36763691 PMCID: PMC9917260 DOI: 10.1371/journal.pone.0281648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/28/2023] [Indexed: 02/12/2023] Open
Abstract
Payoff, emotion, and historical memory directly determine investment decision-making for incomplete rational men in a public goods game (PGG). How these factors affect investment and cooperation behavior has not been investigated yet. Thus, we proposed a new investment model involving theses three factors to examine its coupling effect on cooperation in PGG. An emotional increment was employed to describe the emotional change in every round by supposing an investor' pleasure to a cooperator but regret to a defector. Furthermore, an emotional index was formed by accumulating these historical changes with a memory decline effect. Then an investment formula was proposed by considering this emotional index and a historical payoff. Moreover, the cooperation level affected by these factors was investigated. Results show a mutually reinforcing relationship between emotional and payoff investments. A poor memory capacity coefficient allows defectors to change their behaviors but produces some opportunists. A large memory length results in a high cooperator fraction but is not suggested to be too large.
Collapse
|
2
|
Zhou K, Ren T. Low-carbon technology collaborative innovation in industrial cluster with social exclusion: An evolutionary game theory perspective. CHAOS (WOODBURY, N.Y.) 2021; 31:033124. [PMID: 33810736 DOI: 10.1063/5.0037956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
As governments implement low-carbon economy widely, boosting low-carbon transformation in industrial clusters has become a challenge. This study establishes an evolutionary game model of low-carbon technology collaborative innovation based on spatial public goods game to solve the free-riding problem effectively in research and development. By introducing a social exclusion mechanism, we explore the requirements for the emergence of cooperation between enterprises, and we consider the heterogeneity and scale-free characteristics of industrial clusters comprehensively. Simulation results confirm that social exclusion can significantly promote cooperation as a form of cooperation with additional cost. When exclusion cost decreases and probability increases, an excluder can survive in a lower enhancement factor, which guarantees a stable exclusion mechanism. Furthermore, this mechanism is key to forming and maintaining cooperative behavior. When a cluster follows a scale-free distribution, the sparse network structure can avoid cooperation collapse. Moreover, heterogeneous investment is a robust alternative in the face of invading defectors. This study provides a new understanding to promote the collaborative innovation of enterprises in industrial clusters.
Collapse
Affiliation(s)
- Ke Zhou
- School of Economics and Management, Wuhan University, Wuhan 430072, China
| | - Tianyu Ren
- School of Economics and Management, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Marques ICP, Franco M. Cooperation networks in the area of health: systematic literature review. Scientometrics 2020. [DOI: 10.1007/s11192-019-03341-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Structural power and the evolution of collective fairness in social networks. PLoS One 2017; 12:e0175687. [PMID: 28410385 PMCID: PMC5391959 DOI: 10.1371/journal.pone.0175687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/29/2017] [Indexed: 11/19/2022] Open
Abstract
From work contracts and group buying platforms to political coalitions and international climate and economical summits, often individuals assemble in groups that must collectively reach decisions that may favor each part unequally. Here we quantify to which extent our network ties promote the evolution of collective fairness in group interactions, modeled by means of Multiplayer Ultimatum Games (MUG). We show that a single topological feature of social networks—which we call structural power—has a profound impact on the tendency of individuals to take decisions that favor each part equally. Increased fair outcomes are attained whenever structural power is high, such that the networks that tie individuals allow them to meet the same partners in different groups, thus providing the opportunity to strongly influence each other. On the other hand, the absence of such close peer-influence relationships dismisses any positive effect created by the network. Interestingly, we show that increasing the structural power of a network leads to the appearance of well-defined modules—as found in human social networks that often exhibit community structure—providing an interaction environment that maximizes collective fairness.
Collapse
|
5
|
Meloni S, Xia CY, Moreno Y. Heterogeneous resource allocation can change social hierarchy in public goods games. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170092. [PMID: 28405406 PMCID: PMC5383863 DOI: 10.1098/rsos.170092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 06/07/2023]
Abstract
Public goods games (PGGs) represent one of the most useful tools to study group interactions. However, even if they could provide an explanation for the emergence and stability of cooperation in modern societies, they are not able to reproduce some key features observed in social and economical interactions. The typical shape of wealth distribution-known as Pareto Law-and the microscopic organization of wealth production are two of them. Here, we introduce a modification to the classical formulation of PGGs that allows for the emergence of both of these features from first principles. Unlike traditional PGGs, where players contribute equally to all the games in which they participate, we allow individuals to redistribute their contribution according to what they earned in previous rounds. Results from numerical simulations show that not only a Pareto distribution for the pay-offs naturally emerges but also that if players do not invest enough in one round they can act as defectors even if they are formally cooperators. Our results not only give an explanation for wealth heterogeneity observed in real data but also point to a conceptual change on cooperation in collective dilemmas.
Collapse
Affiliation(s)
- Sandro Meloni
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain
- Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain
| | - Cheng-Yi Xia
- Key Laboratory of Computer Vision and System (Ministry of Education) and Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Yamir Moreno
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain
- Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain
- Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, Turin, Italy
| |
Collapse
|
6
|
|
7
|
Li A, Wang L. Evolutionary dynamics of synergistic and discounted group interactions in structured populations. J Theor Biol 2015; 377:57-65. [PMID: 25890033 DOI: 10.1016/j.jtbi.2015.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
The emergence of cooperation between unrelated individuals enables researchers to study how the collective cooperative behavior survives in a world where egoists could get more short-term benefits. The spatial multi-player games, which invoke interactions between individuals who are not directly linked by the interactive networks, are drawing more and more attention in exploring the evolution of cooperation. Here we address the evolutionary dynamics in infinite structured populations with discounted, linear, and synergistic group interactions. The five classical scenarios are recovered from the dynamics: (i) dominating defection, (ii) dominating cooperation, (iii) co-existence, (iv) bi-stability, and (v) neutral variants. For linear interactions, the evolutionary dynamics is equivalent to that in finite as well as the well-mixed counterparts, which can be achieved by a payoff matrix transformation, and it illustrates that the more neighbors there are, the harder the cooperators survive. Yet both cooperation and defection emerge easier in finite populations than in infinite for discounted and synergistic interactions. Counterintuitively, we find that the synergistic group interactions always raise cooperators׳ barriers to occupy the population with the increase of the number of neighbors in infinite structured populations. Our results go against the common belief that synergistic interactions are necessarily beneficial for the cooperative behavior.
Collapse
Affiliation(s)
- Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China; Center for Complex Network Research and Department of Physics, Northeastern University, Boston, MA 02115, USA.
| | - Long Wang
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Moreira JA, Pacheco JM, Santos FC. Evolution of collective action in adaptive social structures. Sci Rep 2013; 3:1521. [PMID: 23519283 PMCID: PMC3605608 DOI: 10.1038/srep01521] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/12/2013] [Indexed: 11/23/2022] Open
Abstract
Many problems in nature can be conveniently framed as a problem of evolution of collective cooperative behaviour, often modelled resorting to the tools of evolutionary game theory in well-mixed populations, combined with an appropriate N-person dilemma. Yet, the well-mixed assumption fails to describe the population dynamics whenever individuals have a say in deciding which groups they will participate. Here we propose a simple model in which dynamical group formation is described as a result of a topological evolution of a social network of interactions. We show analytically how evolutionary dynamics under public goods games in finite adaptive networks can be effectively transformed into a N-Person dilemma involving both coordination and co-existence. Such dynamics would be impossible to foresee from more conventional 2-person interactions as well as from descriptions based on infinite, well-mixed populations. Finally, we show how stochastic effects help rendering cooperation viable, promoting polymorphic configurations in which cooperators prevail.
Collapse
Affiliation(s)
- João A Moreira
- ATP-group, CMAF, Instituto para a Investigação Interdisciplinar, P-1649-003 Lisboa Codex, Portugal
| | | | | |
Collapse
|
9
|
Szolnoki A, Perc M. Effectiveness of conditional punishment for the evolution of public cooperation. J Theor Biol 2013; 325:34-41. [DOI: 10.1016/j.jtbi.2013.02.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 11/24/2022]
|
10
|
Perc M, Gómez-Gardeñes J, Szolnoki A, Floría LM, Moreno Y. Evolutionary dynamics of group interactions on structured populations: a review. J R Soc Interface 2013; 10:20120997. [PMID: 23303223 PMCID: PMC3565747 DOI: 10.1098/rsif.2012.0997] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/12/2012] [Indexed: 11/12/2022] Open
Abstract
Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory.
Collapse
Affiliation(s)
- Matjaz Perc
- University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.
| | | | | | | | | |
Collapse
|
11
|
Reward from punishment does not emerge at all costs. PLoS Comput Biol 2013; 9:e1002868. [PMID: 23341764 PMCID: PMC3547799 DOI: 10.1371/journal.pcbi.1002868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/14/2012] [Indexed: 11/19/2022] Open
Abstract
The conundrum of cooperation has received increasing attention during the last decade. In this quest, the role of altruistic punishment has been identified as a mechanism promoting cooperation. Here we investigate the role of altruistic punishment on the emergence and maintenance of cooperation in structured populations exhibiting connectivity patterns recently identified as key elements of social networks. We do so in the framework of Evolutionary Game Theory, employing the Prisoner's Dilemma and the Stag-Hunt metaphors to model the conflict between individual and collective interests regarding cooperation. We find that the impact of altruistic punishment strongly depends on the ratio q/p between the cost of punishing a defecting partner (q) and the actual punishment incurred by the partner (p). We show that whenever q/p<1, altruistic punishment turns out to be detrimental for cooperation for a wide range of payoff parameters, when compared to the scenario without punishment. The results imply that while locally, the introduction of peer punishment may seem to reduce the chances of free-riding, realistic population structure may drive the population towards the opposite scenario. Hence, structured populations effectively reduce the expected beneficial contribution of punishment to the emergence of cooperation which, if not carefully dosed, may in fact hinder the chances of widespread cooperation. Altruistic punishment — when a cooperative individual pays a cost to punish her defective partner — has been described as one of the mechanisms that help to explain cooperation's ubiquity in nature. Here, we investigate a model population where individuals interact with each other along the links of a network. The network is built so that it contains the relevant features of real social and biological interaction webs. Individuals engage in cooperation dilemmas with each other and have the possibility to punish defective partners in order to enforce higher cooperation levels. However, it turns out that the introduction of altruistic punishment not always promotes cooperation – in fact, it can actually hinder the spread of cooperation in a variety of cases that we are able to characterize. Effects acting at “micro”, individual level, such as softening the dilemma and reducing the pressure originating from the fear from being cheated and/or the temptation to cheat, can result in lower overall cooperation at a “macro”, population-wide level, due to the complex interference of the social dilemma and the heterogeneous interaction network.
Collapse
|
12
|
Santos MD, Pinheiro FL, Santos FC, Pacheco JM. Dynamics of N-person snowdrift games in structured populations. J Theor Biol 2012; 315:81-6. [DOI: 10.1016/j.jtbi.2012.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/25/2022]
|
13
|
Chen X, Szolnoki A, Perc M. Risk-driven migration and the collective-risk social dilemma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:036101. [PMID: 23030974 DOI: 10.1103/physreve.86.036101] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Indexed: 06/01/2023]
Abstract
A collective-risk social dilemma implies that personal endowments will be lost if contributions to the common pool within a group are too small. Failure to reach the collective target thus has dire consequences for all group members, independently of their strategies. Wanting to move away from unfavorable locations is therefore anything but surprising. Inspired by these observations, we here propose and study a collective-risk social dilemma where players are allowed to move if the collective failure becomes too probable. More precisely, this so-called risk-driven migration is launched depending on the difference between the actual contributions and the declared target. Mobility therefore becomes an inherent property that is utilized in an entirely self-organizing manner. We show that under these assumptions cooperation is promoted much more effectively than under the action of manually determined migration rates. For the latter, we in fact identify parameter regions where the evolution of cooperation is greatly inhibited. Moreover, we find unexpected spatial patterns where cooperators that do not form compact clusters outperform those that do, and where defectors are able to utilize strikingly different ways of invasion. The presented results support the recently revealed importance of percolation for the successful evolution of public cooperation, while at the same time revealing surprisingly simple methods of self-organization towards socially desirable states.
Collapse
Affiliation(s)
- Xiaojie Chen
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria.
| | | | | |
Collapse
|
14
|
Chen X, Szolnoki A, Perc M, Wang L. Impact of generalized benefit functions on the evolution of cooperation in spatial public goods games with continuous strategies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:066133. [PMID: 23005188 DOI: 10.1103/physreve.85.066133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Indexed: 06/01/2023]
Abstract
Cooperation and defection may be considered to be two extreme responses to a social dilemma. Yet the reality is much less clear-cut. Between the two extremes lies an interval of ambivalent choices, which may be captured theoretically by means of continuous strategies defining the extent of the contributions of each individual player to the common pool. If strategies are chosen from the unit interval, where 0 corresponds to pure defection and 1 corresponds to the maximal contribution, the question is what is the characteristic level of individual investments to the common pool that emerges if the evolution is guided by different benefit functions. Here we consider the steepness and the threshold as two parameters defining an array of generalized benefit functions, and we show that in a structured population there exist intermediate values of both at which the collective contributions are maximal. However, as the cost-to-benefit ratio of cooperation increases, the characteristic threshold decreases while the corresponding steepness increases. Our observations remain valid if more complex sigmoid functions are used, thus reenforcing the importance of carefully adjusted benefits for high levels of public cooperation.
Collapse
Affiliation(s)
- Xiaojie Chen
- Evolution and Ecology Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.
| | | | | | | |
Collapse
|
15
|
Adaptive and bounded investment returns promote cooperation in spatial public goods games. PLoS One 2012; 7:e36895. [PMID: 22615836 PMCID: PMC3353963 DOI: 10.1371/journal.pone.0036895] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/09/2012] [Indexed: 11/26/2022] Open
Abstract
The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The multiplication factor in this game can characterize the investment return from the public good, which may be variable depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider that the multiplication factor in each group is updated based on the differences between the local and global interactive environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior in structured populations.
Collapse
|
16
|
Santos FC, Pinheiro FL, Lenaerts T, Pacheco JM. The role of diversity in the evolution of cooperation. J Theor Biol 2012; 299:88-96. [PMID: 21930134 DOI: 10.1016/j.jtbi.2011.09.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 06/21/2011] [Accepted: 09/02/2011] [Indexed: 11/25/2022]
|
17
|
Szolnoki A, Perc M. Conditional strategies and the evolution of cooperation in spatial public goods games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:026104. [PMID: 22463276 DOI: 10.1103/physreve.85.026104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/12/2012] [Indexed: 05/31/2023]
Abstract
The fact that individuals will most likely behave differently in different situations begets the introduction of conditional strategies. Inspired by this, we study the evolution of cooperation in the spatial public goods game, where, besides unconditional cooperators and defectors, also different types of conditional cooperators compete for space. Conditional cooperators will contribute to the public good only if other players within the group are likely to cooperate as well but will withhold their contribution otherwise. Depending on the number of other cooperators that are required to elicit cooperation of a conditional cooperator, the latter can be classified in as many types as there are players within each group. We find that the most cautious cooperators, who require all other players within a group to be conditional cooperators, are the undisputed victors of the evolutionary process, even at very low synergy factors. We show that the remarkable promotion of cooperation is due primarily to the spontaneous emergence of quarantining of defectors, who become surrounded by conditional cooperators and are forced into isolated convex "bubbles" from which they are unable to exploit the public good. This phenomenon can be observed only in structured populations, thus adding to the relevance of pattern formation for the successful evolution of cooperation.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, PO Box 49, H-1525 Budapest, Hungary
| | | |
Collapse
|