1
|
Song Z, Zhou S, Zhang H, Keller NP, Oakley BR, Liu X, Yin WB. Fungal secondary metabolism is governed by an RNA-binding protein CsdA/RsdA complex. Nat Commun 2023; 14:7351. [PMID: 37963872 PMCID: PMC10645843 DOI: 10.1038/s41467-023-43205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Production of secondary metabolites is controlled by a complicated regulatory network in eukaryotic cells. Several layers of regulators are involved in this process, ranging from pathway-specific regulation, to epigenetic control, to global regulation. Here, we discover that interaction of an RNA-binding protein CsdA with a regulator RsdA coordinates fungal secondary metabolism. Employing a genetic deletion approach and transcriptome analysis as well as metabolomics analysis, we reveal that CsdA and RsdA synergistically regulate fungal secondary metabolism comprehensively. Mechanistically, comprehensive genetic and biochemical studies prove that RsdA and CsdA co-localize in the nucleus and physically interact to achieve their functions. In particular, we demonstrate that CsdA mediates rsdA expression by binding specific motif "GUCGGUAU" of its pre-mRNA at a post-transcriptional level. We thus uncover a mechanism in which RNA-binding protein physically interacts with, and controls the expression level of, the RsdA to coordinate fungal secondary metabolism.
Collapse
Affiliation(s)
- Zili Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuang Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Hongjiao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China.
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| |
Collapse
|
2
|
Li L, Chen S, Gao M, Ding B, Zhang J, Zhou Y, Liu Y, Yang H, Wu Q, Chen F. Acidic conditions induce the accumulation of orange Monascus pigments during liquid-state fermentation of Monascus ruber M7. Appl Microbiol Biotechnol 2019; 103:8393-8402. [DOI: 10.1007/s00253-019-10114-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
|
3
|
El Khoury R, Caceres I, Puel O, Bailly S, Atoui A, Oswald IP, El Khoury A, Bailly JD. Identification of the Anti-Aflatoxinogenic Activity of Micromeria graeca and Elucidation of Its Molecular Mechanism in Aspergillus flavus. Toxins (Basel) 2017; 9:toxins9030087. [PMID: 28257049 PMCID: PMC5371842 DOI: 10.3390/toxins9030087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/25/2023] Open
Abstract
Of all the food-contaminating mycotoxins, aflatoxins, and most notably aflatoxin B1 (AFB1), are found to be the most toxic and economically costly. Green farming is striving to replace fungicides and develop natural preventive strategies to minimize crop contamination by these toxic fungal metabolites. In this study, we demonstrated that an aqueous extract of the medicinal plant Micromeria graeca—known as hyssop—completely inhibits aflatoxin production by Aspergillus flavus without reducing fungal growth. The molecular inhibitory mechanism was explored by analyzing the expression of 61 genes, including 27 aflatoxin biosynthesis cluster genes and 34 secondary metabolism regulatory genes. This analysis revealed a three-fold down-regulation of aflR and aflS encoding the two internal cluster co-activators, resulting in a drastic repression of all aflatoxin biosynthesis genes. Hyssop also targeted fifteen regulatory genes, including veA and mtfA, two major global-regulating transcription factors. The effect of this extract is also linked to a transcriptomic variation of several genes required for the response to oxidative stress such as msnA, srrA, catA, cat2, sod1, mnsod, and stuA. In conclusion, hyssop inhibits AFB1 synthesis at the transcriptomic level. This aqueous extract is a promising natural-based solution to control AFB1 contamination.
Collapse
Affiliation(s)
- Rhoda El Khoury
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
- Laboratoire de Mycologie et Sécurité des Aliments (LMSA), Département des sciences de la vie et de la terres - Biochimie, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael Beirut 1104 2020 Lebanon.
| | - Isaura Caceres
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Olivier Puel
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Sylviane Bailly
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Ali Atoui
- Laboratory of Microbiology, Department of Natural Sciences and Earth, Faculty of Sciences I, Lebanese University, Hadath Campus, P.O. Box 5, Beirut, Lebanon.
| | - Isabelle P Oswald
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - André El Khoury
- Laboratoire de Mycologie et Sécurité des Aliments (LMSA), Département des sciences de la vie et de la terres - Biochimie, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael Beirut 1104 2020 Lebanon.
| | - Jean-Denis Bailly
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| |
Collapse
|
4
|
Bussink HJ, Bignell EM, Múnera-Huertas T, Lucena-Agell D, Scazzocchio C, Espeso EA, Bertuzzi M, Rudnicka J, Negrete-Urtasun S, Peñas-Parilla MM, Rainbow L, Peñalva MÁ, Arst HN, Tilburn J. Refining the pH response in Aspergillus nidulans: a modulatory triad involving PacX, a novel zinc binuclear cluster protein. Mol Microbiol 2015; 98:1051-72. [PMID: 26303777 PMCID: PMC4832277 DOI: 10.1111/mmi.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/18/2023]
Abstract
The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC72 to PacC27 via PacC53. Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid‐expressed palF, specifying the Pal pathway arrestin, probably by PacC27 and/or PacC53, prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC
trans‐alleles show that pacC preferential alkaline‐expression results from derepression by depletion of the acid‐prevalent PacC72 form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC27 formed by pH‐independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino‐terminal coiled‐coil and a carboxy‐terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1‐like transposon.
Collapse
Affiliation(s)
- Henk-Jan Bussink
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Elaine M Bignell
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Claudio Scazzocchio
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Susana Negrete-Urtasun
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Maria M Peñas-Parilla
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Lynne Rainbow
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel Á Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Herbert N Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| |
Collapse
|
5
|
Häkkinen M, Sivasiddarthan D, Aro N, Saloheimo M, Pakula TM. The effects of extracellular pH and of the transcriptional regulator PACI on the transcriptome of Trichoderma reesei. Microb Cell Fact 2015; 14:63. [PMID: 25925231 PMCID: PMC4446002 DOI: 10.1186/s12934-015-0247-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 04/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background Extracellular pH is one of the several environmental factors affecting protein production by filamentous fungi. Regulatory mechanisms ensure that extracellular enzymes are produced under pH-conditions in which the enzymes are active. In filamentous fungi, the transcriptional regulation in different ambient pH has been studied especially in Aspergilli, whereas the effects of pH in the industrial producer of hydrolytic enzymes, Trichoderma reesei, have mainly been studied at the protein level. In this study, the pH-dependent expression of T. reesei genes was investigated by genome-wide transcriptional profiling and by analysing the effects of deletion of the gene encoding the transcriptional regulator pac1, the orthologue of Aspergillus nidulans pacC gene. Results Transcriptional analysis revealed the pH-responsive genes of T. reesei, and functional classification of the genes identified the activities most affected by changing pH. A large number of genes encoding especially transporters, signalling-related proteins, extracellular enzymes and proteins involved in different metabolism-related functions were found to be pH-responsive. Several cellulase- and hemicellulase-encoding genes were found among the pH-responsive genes. Especially, genes encoding hemicellulases with the similar type of activity were shown to include both genes up-regulated at low pH and genes up-regulated at high pH. However, relatively few of the cellulase- and hemicellulase-encoding genes showed direct PACI-mediated regulation, indicating the importance of other regulatory mechanisms affecting expression in different pH conditions. New information was gained on the effects of pH on the genes involved in ambient pH-signalling and on the known and candidate regulatory genes involved in regulation of cellulase and hemicellulase encoding genes. In addition, co-regulated genomic clusters responding to change of ambient pH were identified. Conclusions Ambient pH was shown to be an important determinant of T. reesei gene expression. The pH-responsive genes, including those affected by the regulator of ambient pH sensing, were identified, and novel information on the activity of genes encoding carbohydrate active enzymes at different pH was gained. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0247-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Häkkinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Dhinakaran Sivasiddarthan
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Nina Aro
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| |
Collapse
|