1
|
Contreras-Torres E, Marrero-Ponce Y, Terán JE, Agüero-Chapin G, Antunes A, García-Jacas CR. Fuzzy spherical truncation-based multi-linear protein descriptors: From their definition to application in structural-related predictions. Front Chem 2022; 10:959143. [PMID: 36277354 PMCID: PMC9585278 DOI: 10.3389/fchem.2022.959143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
This study introduces a set of fuzzy spherically truncated three-dimensional (3D) multi-linear descriptors for proteins. These indices codify geometric structural information from kth spherically truncated spatial-(dis)similarity two-tuple and three-tuple tensors. The coefficients of these truncated tensors are calculated by applying a smoothing value to the 3D structural encoding based on the relationships between two and three amino acids of a protein embedded into a sphere. At considering, the geometrical center of the protein matches with center of the sphere, the distance between each amino acid involved in any specific interaction and the geometrical center of the protein can be computed. Then, the fuzzy membership degree of each amino acid from an spherical region of interest is computed by fuzzy membership functions (FMFs). The truncation value is finally a combination of the membership degrees from interacting amino acids, by applying the arithmetic mean as fusion rule. Several fuzzy membership functions with diverse biases on the calculation of amino acids memberships (e.g., Z-shaped (close to the center), PI-shaped (middle region), and A-Gaussian (far from the center)) were considered as well as traditional truncation functions (e.g., Switching). Such truncation functions were comparatively evaluated by exploring: 1) the frequency of membership degrees, 2) the variability and orthogonality analyses among them based on the Shannon Entropy’s and Principal Component’s methods, respectively, and 3) the prediction performance of alignment-free prediction of protein folding rates and structural classes. These analyses unraveled the singularity of the proposed fuzzy spherically truncated MDs with respect to the classical (non-truncated) ones and respect to the MDs truncated with traditional functions. They also showed an improved prediction power by attaining an external correlation coefficient of 95.82% in the folding rate modelling and an accuracy of 100% in distinguishing structural protein classes. These outcomes are better than the ones attained by existing approaches, justifying the theoretical contribution of this report. Thus, the fuzzy spherically truncated-based protein descriptors from MuLiMs-MCoMPAs (http://tomocomd.com/mulims-mcompas) are promising alignment-free predictors for modeling protein functions and properties.
Collapse
Affiliation(s)
- Ernesto Contreras-Torres
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito, Pichincha, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
- BCAM—Basque Center for Applied Mathematics, Bilbao, Spain
| | - Yovani Marrero-Ponce
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito, Pichincha, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
- Computer-Aided Molecular “Biosilico” Discovery and Bioinformatics Research International Network (CAMD-BIR IN), Quito, Ecuador
- *Correspondence: Yovani Marrero-Ponce, , , César R. García-Jacas, , ,
| | - Julio E. Terán
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito, Pichincha, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
- Department of Textile Engineering, Chemistry and Science, College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Guillermin Agüero-Chapin
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - César R. García-Jacas
- Cátedras Conacyt—Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
- *Correspondence: Yovani Marrero-Ponce, , , César R. García-Jacas, , ,
| |
Collapse
|
2
|
Romero-Molina S, Ruiz-Blanco YB, Green JR, Sanchez-Garcia E. ProtDCal-Suite: A web server for the numerical codification and functional analysis of proteins. Protein Sci 2020; 28:1734-1743. [PMID: 31271472 DOI: 10.1002/pro.3673] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022]
Abstract
Computational tools for the analysis of protein data and the prediction of biological properties are essential in life sciences and biomedical research. Here, we introduce ProtDCal-Suite, a web server comprising a set of machine learning-based methods for studying proteins. The main module of ProtDCal-Suite is the ProtDCal software. ProtDCal translates the structural information of proteins into numerical descriptors that serve as input to machine-learning techniques. The ProtDCal-Suite server also incorporates a post-processing optional stage that allows ranking and filtering the obtained descriptors by computing their Shannon entropy values across the input set of proteins. ProtDCal's codification was used in the development of models for the prediction of specific protein properties. Thus, the other modules of ProtDCal-Suite are protein analysis tools implemented using ProtDCal's descriptors. Among them are PPI-Detect, for predicting the interaction likelihood of protein-protein and protein-peptide pairs, Enzyme Identifier, for identifying enzymes from amino acid sequences or 3D structures, and Pred-NGlyco, for predicting N-glycosylation sites. ProtDCal-Suite is freely accessible at https://protdcal.zmb.uni-due.de.
Collapse
Affiliation(s)
- Sandra Romero-Molina
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - James R Green
- Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Contreras-Torres E, Marrero-Ponce Y, Terán JE, García-Jacas CR, Brizuela CA, Sánchez-Rodríguez JC. MuLiMs-MCoMPAs: A Novel Multiplatform Framework to Compute Tensor Algebra-Based Three-Dimensional Protein Descriptors. J Chem Inf Model 2020; 60:1042-1059. [PMID: 31663741 DOI: 10.1021/acs.jcim.9b00629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This report introduces the MuLiMs-MCoMPAs software (acronym for Multi-Linear Maps based on N-Metric and Contact Matrices of 3D Protein and Amino-acid weightings), designed to compute tensor-based 3D protein structural descriptors by applying two- and three-linear algebraic forms. Moreover, these descriptors contemplate generalizing components such as novel 3D protein structural representations, (dis)similarity metrics, and multimetrics to extract geometrical related information between two and three amino acids, weighting schemes based on amino acid properties, matrix normalization procedures that consider simple-stochastic and mutual probability transformations, topological and geometrical cutoffs, amino acid, and group-based MD calculations, and aggregation operators for merging amino acidic and group MDs. The MuLiMs-MCoMPAs software, which belongs to the ToMoCoMD-CAMPS suite, was developed in Java (version 1.8) using the Chemistry Development Kit (CDK) (version 1.4.19) and the Jmol libraries. This software implemented a divide-and-conquer strategy to parallelize the computation of the indices as well as modules for data preprocessing and batch computing functionalities. Furthermore, it consists of two components: (i) a desktop-graphical user interface (GUI) and (ii) an API library. The relevance of this novel approach is demonstrated through two analyses that considered Shannon's entropy-based variability and a principal component analysis. These studies showed that the MuLiMs-MCoMPAs' three-linear descriptor family contains higher informational entropy than several other descriptors generated with available computation tools. Moreover, the MuLiMs-MCoMPAs indices capture additional orthogonal information to the one codified by the available calculation approaches. As a result, two sets of suggested theoretical configurations that contain 13648 two-linear indices and 20263 three-linear indices are available for download at tomocomd.com . Furthermore, as a demonstration of the applicability and easy integration of the MuLiMs library into a QSAR-based expert system, a software application (ProStAF) was generated to predict SCOP protein structural classes and folding rate. It can thus be anticipated that the MuLiMs-MCoMPAs framework will turn into a valuable contribution to the chem- and bioinformatics research fields.
Collapse
Affiliation(s)
- Ernesto Contreras-Torres
- Computer-Aided Molecular "Biosilico" Discovery and Bioinformatics Research International Network (CAMD-BIR IN) , Cumbayá, Quito , Ecuador.,Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas; and Instituto de Simulación Computacional (ISC-USFQ) , Universidad San Francisco de Quito (USFQ) , Diego de Robles y vía Interoceánica , Quito 170157 , Pichincha , Ecuador
| | - Yovani Marrero-Ponce
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas; and Instituto de Simulación Computacional (ISC-USFQ) , Universidad San Francisco de Quito (USFQ) , Diego de Robles y vía Interoceánica , Quito 170157 , Pichincha , Ecuador.,Grupo GINUMED, Facultad de Salud, Programa de Medicina , Corporacion Universitaria Rafal Nuñez , Cartagena , Colombia.,Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , 46010 Valéncia , Spain
| | - Julio E Terán
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas; and Instituto de Simulación Computacional (ISC-USFQ) , Universidad San Francisco de Quito (USFQ) , Diego de Robles y vía Interoceánica , Quito 170157 , Pichincha , Ecuador.,Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química , Universidad San Francisco de Quito (USFQ) , Diego de Robles y vía Interoceánica , Quito 170157 , Pichincha Ecuador
| | - César R García-Jacas
- Cátedras Conacyt-Departamento de Ciencias de la Computación , Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) , Ensenada , Baja California , México
| | - Carlos A Brizuela
- Departamento de Ciencias de la Computación , Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) , Ensenada , Baja California , México
| | | |
Collapse
|
4
|
Marrero-Ponce Y, Teran JE, Contreras-Torres E, García-Jacas CR, Perez-Castillo Y, Cubillan N, Peréz-Giménez F, Valdés-Martini JR. LEGO-based generalized set of two linear algebraic 3D bio-macro-molecular descriptors: Theory and validation by QSARs. J Theor Biol 2020; 485:110039. [DOI: 10.1016/j.jtbi.2019.110039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 11/28/2022]
|
5
|
Terán JE, Marrero-Ponce Y, Contreras-Torres E, García-Jacas CR, Vivas-Reyes R, Terán E, Torres FJ. Tensor Algebra-based Geometrical (3D) Biomacro-Molecular Descriptors for Protein Research: Theory, Applications and Comparison with other Methods. Sci Rep 2019; 9:11391. [PMID: 31388082 PMCID: PMC6684663 DOI: 10.1038/s41598-019-47858-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022] Open
Abstract
In this report, a new type of tridimensional (3D) biomacro-molecular descriptors for proteins are proposed. These descriptors make use of multi-linear algebra concepts based on the application of 3-linear forms (i.e., Canonical Trilinear (Tr), Trilinear Cubic (TrC), Trilinear-Quadratic-Bilinear (TrQB) and so on) as a specific case of the N-linear algebraic forms. The definition of the kth 3-tuple similarity-dissimilarity spatial matrices (Tensor's Form) are used for the transformation and for the representation of the existing chemical information available in the relationships between three amino acids of a protein. Several metrics (Minkowski-type, wave-edge, etc) and multi-metrics (Triangle area, Bond-angle, etc) are proposed for the interaction information extraction, as well as probabilistic transformations (e.g., simple stochastic and mutual probability) to achieve matrix normalization. A generalized procedure considering amino acid level-based indices that can be fused together by using aggregator operators for descriptors calculations is proposed. The obtained results demonstrated that the new proposed 3D biomacro-molecular indices perform better than other approaches in the SCOP-based discrimination and the prediction of folding rate of proteins by using simple linear parametrical models. It can be concluded that the proposed method allows the definition of 3D biomacro-molecular descriptors that contain orthogonal information capable of providing better models for applications in protein science.
Collapse
Affiliation(s)
- Julio E Terán
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Translacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito, Pichincha, Ecuador
- Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, and Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Translacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito, Pichincha, Ecuador.
- Universidad de San Buenaventura - Cartagena - Facultad de Ciencias de la Salud - Grupo de Investigación Microbiología & Ambiente (GIMA) - Calle Real de Ternera, Diagonal 32, No. 30-966, Cartagena, Código postal: 1300 10, Colombia.
| | - Ernesto Contreras-Torres
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Translacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito, Pichincha, Ecuador
| | - César R García-Jacas
- Cátedras CONACYT - Departamento de Ciencia de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Ricardo Vivas-Reyes
- Grupo de Química Cuántica y Teórica de la Universidad de Cartagena-Facultad de Ciencias Exactas y Naturales. Programa de Química. Campus de San Pablo and Grupo GINUMED Corporacion Universitaria Rafal Nuñez. Facultad de Salud. Programa de Medicina., Cartagena, Colombia
- Grupo CipTec, Facultad de Ingenierias. Fundacion Universitaria Tecnologico Comfenalco - Cartagena, Cartagena, Bolívar, Colombia
| | - Enrique Terán
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Translacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito, Pichincha, Ecuador
| | - F Javier Torres
- Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, and Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
| |
Collapse
|
6
|
Ruiz-Blanco YB, Agüero-Chapin G, García-Hernández E, Álvarez O, Antunes A, Green J. Exploring general-purpose protein features for distinguishing enzymes and non-enzymes within the twilight zone. BMC Bioinformatics 2017; 18:349. [PMID: 28732462 PMCID: PMC5521120 DOI: 10.1186/s12859-017-1758-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/13/2017] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yasser B Ruiz-Blanco
- Facultad de Química y Farmacia, Universidad Central "Marta Abreu" de Las Villas, 54830, Santa Clara, Cuba.,Theoretical Chemistry, Max Planck Institute für Kohlenforschung, 45470, Mulheim an der Ruhr, Germany
| | - Guillermin Agüero-Chapin
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal. .,Centro de Bioactivos Químicos (CBQ), Universidad Central ¨Marta Abreu¨ de Las Villas (UCLV), 54830, Santa Clara, Cuba. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), 04360, D.F, México, Mexico
| | - Orlando Álvarez
- Centro de Bioactivos Químicos (CBQ), Universidad Central ¨Marta Abreu¨ de Las Villas (UCLV), 54830, Santa Clara, Cuba
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - James Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
7
|
Novel "extended sequons" of human N-glycosylation sites improve the precision of qualitative predictions: an alignment-free study of pattern recognition using ProtDCal protein features. Amino Acids 2016; 49:317-325. [PMID: 27896447 DOI: 10.1007/s00726-016-2362-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
Abstract
N-Glycosylation is a common post-translational modification that plays an important role in the proper folding and function of many proteins. This modification is largely dependent on the presence of a sequence motif called a "sequon" defined as Asn-Xxx-Ser/Thr. However, evidence has shown that the presence of such a "sequon" is insufficient to determine the occurrence of N-glycosylation with high precision. This study aims to elucidate patterns that can more accurately predict N-glycosylation sites in human proteins. The novel motifs are evaluated using benchmarking data from 188 organisms. Performance is largely sustained compared to the human data, which validates the robustness of the novel extracted "extended sequons". We, therefore, introduce new knowledge about sequence-related factors that control N-glycosylation.
Collapse
|
8
|
|
9
|
Ruiz-Blanco YB, Paz W, Green J, Marrero-Ponce Y. ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins. BMC Bioinformatics 2015; 16:162. [PMID: 25982853 PMCID: PMC4432771 DOI: 10.1186/s12859-015-0586-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The exponential growth of protein structural and sequence databases is enabling multifaceted approaches to understanding the long sought sequence-structure-function relationship. Advances in computation now make it possible to apply well-established data mining and pattern recognition techniques to these data to learn models that effectively relate structure and function. However, extracting meaningful numerical descriptors of protein sequence and structure is a key issue that requires an efficient and widely available solution. RESULTS We here introduce ProtDCal, a new computational software suite capable of generating tens of thousands of features considering both sequence-based and 3D-structural descriptors. We demonstrate, by means of principle component analysis and Shannon entropy tests, how ProtDCal's sequence-based descriptors provide new and more relevant information not encoded by currently available servers for sequence-based protein feature generation. The wide diversity of the 3D-structure-based features generated by ProtDCal is shown to provide additional complementary information and effectively completes its general protein encoding capability. As demonstration of the utility of ProtDCal's features, prediction models of N-linked glycosylation sites are trained and evaluated. Classification performance compares favourably with that of contemporary predictors of N-linked glycosylation sites, in spite of not using domain-specific features as input information. CONCLUSIONS ProtDCal provides a friendly and cross-platform graphical user interface, developed in the Java programming language and is freely available at: http://bioinf.sce.carleton.ca/ProtDCal/ . ProtDCal introduces local and group-based encoding which enhances the diversity of the information captured by the computed features. Furthermore, we have shown that adding structure-based descriptors contributes non-redundant additional information to the features-based characterization of polypeptide systems. This software is intended to provide a useful tool for general-purpose encoding of protein sequences and structures for applications is protein classification, similarity analyses and function prediction.
Collapse
Affiliation(s)
- Yasser B Ruiz-Blanco
- Unit of Computer-Aided Molecular "Biosilico" Discovery and Bioinformatic Research (CAMD-BIR Unit), Facultad de Química y Farmacia, Universidad Central "Marta Abreu" de Las Villas, Road to Camajuani km 5 ½, Santa Clara, CP: 54830, Villa Clara, Cuba. .,Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada.
| | - Waldo Paz
- Unit of Computer-Aided Molecular "Biosilico" Discovery and Bioinformatic Research (CAMD-BIR Unit), Facultad de Química y Farmacia, Universidad Central "Marta Abreu" de Las Villas, Road to Camajuani km 5 ½, Santa Clara, CP: 54830, Villa Clara, Cuba. .,Centre of Informatics Studies (CEI), Universidad Central "Marta Abreu" de Las Villas, Road to Camajuani km 5 ½, Santa Clara, CP:54830, Villa Clara, Cuba.
| | - James Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada.
| | - Yovani Marrero-Ponce
- Unit of Computer-Aided Molecular "Biosilico" Discovery and Bioinformatic Research (CAMD-BIR Unit), Facultad de Química y Farmacia, Universidad Central "Marta Abreu" de Las Villas, Road to Camajuani km 5 ½, Santa Clara, CP: 54830, Villa Clara, Cuba. .,Grupo de Investigación Microbiología y Ambiente (GIMA). Programa de Bacteriología, Facultad Ciencias de la Salud, Universidad de San Buenaventura, Calle Real de Ternera, Cartagena (Bolivar), Colombia.
| |
Collapse
|