1
|
Henstock JR, Price JCFA, El Haj AJ. Determining Which Hydrostatic Pressure Regimes Promote Osteogenesis in Human Mesenchymal Stem Cells. Tissue Eng Regen Med 2024; 21:1141-1151. [PMID: 39190133 PMCID: PMC11589021 DOI: 10.1007/s13770-024-00666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Compressive loading of bone causes hydrostatic pressure changes which have been proposed as an osteogenic differentiation stimulus for mesenchymal stem cells (hMSCs). We hypothesised that hMSCs are adapted to differentiate only in response to cyclic hydrostatic pressures above critical thresholds of magnitude and frequency which correspond to physiological levels of anabolic bone loading. METHODS Using a pneumatic-hydrostatic bioreactor, we applied hydrostatic pressure regimes to human hMSCs in 3D collagen hydrogel cultures for 1 h/day over 28 days to determine which levels of pressure and frequency stimulated osteogenesis in vitro. RESULTS Stimulation of the 3D cultures with 0-280 kPa cyclic hydrostatic pressure at 1 Hz resulted in up to 75% mineralisation in the hydrogel (without exogenous growth factors), whilst static culture or variations of the regime with either constant high pressure (280 kPa, 0 Hz), low-frequency (0.05 Hz, 280 kPa) or low-magnitude (70 kPa, 1 Hz) stimulation had no osteogenic effects (< 2% mineralisation). Nuclear translocation of YAP was observed following cyclic hydrostatic pressure in mature MLO-A5 osteoblasts but not in hMSCs, suggesting that cyclic hydrostatic pressure activates different mechanotransduction pathways in undifferentiated stem cells and committed osteoblasts. CONCLUSIONS Hydrostatic pressure is a potent stimulus for differentiating MSC into highly active osteoblasts and may therefore be a versatile tool for translational cell engineering. We have demonstrated that there are minimum levels of force and frequency needed to trigger osteogenesis, i.e. a pressure 'switch', which corresponds to the physiological forces experienced by cells in their native mesenchymal niche. The mechanotransduction mechanisms underpinning these effects are the subject of further study.
Collapse
Affiliation(s)
- James R Henstock
- Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, NE2 1XE, UK.
| | - Joshua C F A Price
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TH, UK
| |
Collapse
|
2
|
Elblová P, Lunova M, Dejneka A, Jirsa M, Lunov O. Impact of mechanical cues on key cell functions and cell-nanoparticle interactions. DISCOVER NANO 2024; 19:106. [PMID: 38907808 PMCID: PMC11193707 DOI: 10.1186/s11671-024-04052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), 14021, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021, Prague, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic.
| |
Collapse
|
3
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Mechanotransduction Circuits in Human Pathobiology. Int J Mol Sci 2024; 25:3816. [PMID: 38612628 PMCID: PMC11011732 DOI: 10.3390/ijms25073816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
It is widely acknowledged that mechanical forces exerted throughout the human body are critical for cellular and tissue homeostasis [...].
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kostas A. Papavassiliou
- ‘Sotiria’ Hospital, Medical School, First University Department of Respiratory Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
5
|
Hao Y, Wu C, Su Y, Curran J, Henstock JR, Tseng F. A 4D printed self-assembling PEGDA microscaffold fabricated by digital light processing for arthroscopic articular cartilage tissue engineering. PROGRESS IN ADDITIVE MANUFACTURING 2022; 9:3-14. [PMID: 38333227 PMCID: PMC10851926 DOI: 10.1007/s40964-022-00360-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/26/2022] [Indexed: 02/10/2024]
Abstract
Articular cartilage in synovial joints such as the knee has limited capability to regenerate independently, and most clinical options for focal cartilage repair merely delay total joint replacement. Tissue engineering presents a repair strategy in which an injectable cell-laden scaffold material is used to reconstruct the joint in situ through mechanical stabilisation and cell-mediated regeneration. In this study, we designed and 3D-printed millimetre-scale micro-patterned PEGDA biomaterial microscaffolds which self-assemble through tessellation at a scale relevant for applications in osteochondral cartilage reconstruction. Using simulated chondral lesions in an in vitro model, a series of scaffold designs and viscous delivery solutions were assessed. Hexagonal microscaffolds (750 μm x 300 μm) demonstrated the best coverage of a model cartilage lesion (at 73.3%) when injected with a 1% methyl cellulose solution. When chondrocytes were introduced to the biomaterial via a collagen hydrogel, they successfully engrafted with the printed microscaffolds and survived for at least 14 days in vitro, showing the feasibility of reconstructing stratified cartilaginous tissue using this strategy. Our study demonstrates a promising application of this 4D-printed injectable technique for future clinical applications in osteochondral tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1007/s40964-022-00360-0.
Collapse
Affiliation(s)
- Yunjie Hao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Mechanical, Materials and Aerospace, School of Engineering, Harrison Hughes Building, University of Liverpool, Liverpool, L69 3GH U.K
| | - Chuanyung Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Yuchuan Su
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Jude Curran
- Department of Mechanical, Materials and Aerospace, School of Engineering, Harrison Hughes Building, University of Liverpool, Liverpool, L69 3GH U.K
| | - James R. Henstock
- Institute of Life Course & Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, L7 8TX U.K
| | - Fangang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Engineering and System Science, Frontier Research Centre On Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Research Centre for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, 11529 Taipei Taiwan
| |
Collapse
|
6
|
Hallas J, Janvier AJ, Hoettges KF, Henstock JR. Pneumatic piston hydrostatic bioreactor for cartilage tissue engineering. INSTRUMENTATION SCIENCE & TECHNOLOGY 2022; 51:273-289. [PMID: 36998771 PMCID: PMC10041975 DOI: 10.1080/10739149.2022.2124418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
During exercise, mechanical loads from the body are transduced into interstitial fluid pressure changes which are sensed as dynamic hydrostatic forces by cells in cartilage. The effects of these loading forces in health and disease are of interest to biologists, but the availability of affordable equipment for in vitro experimentation is an obstacle to research progress. Here, we report the development of a cost-effective hydropneumatic bioreactor system for research in mechanobiology. The bioreactor was assembled from readily available components (a closed-loop stepped motor and pneumatic actuator) and a minimal number of easily-machined crankshaft parts, whilst the cell culture chambers were custom designed by the biologists using CAD and entirely 3 D printed in PLA. The bioreactor system was shown to be capable of providing cyclic pulsed pressure waves at a user-defined amplitude and frequency ranging from 0 to 400 kPa and up to 3.5 Hz, which are physiologically relevant for cartilage. Tissue engineered cartilage was created from primary human chondrocytes and cultured in the bioreactor for five days with three hours/day cyclic pressure (300 kPa at 1 Hz), simulating moderate physical exercise. Bioreactor-stimulated chondrocytes significantly increased their metabolic activity (by 21%) and glycosaminoglycan synthesis (by 24%), demonstrating effective cellular transduction of mechanosensing. Our Open Design approach focused on using 'off-the-shelf' pneumatic hardware and connectors, open source software and in-house 3 D printing of bespoke cell culture containers to resolve long-standing problems in the availability of affordable bioreactors for laboratory research.
Collapse
Affiliation(s)
- J. Hallas
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, UK
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - A. J. Janvier
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, UK
| | - K. F. Hoettges
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - J. R. Henstock
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, UK
| |
Collapse
|
7
|
Waters SL, Schumacher LJ, El Haj AJ. Regenerative medicine meets mathematical modelling: developing symbiotic relationships. NPJ Regen Med 2021; 6:24. [PMID: 33846347 PMCID: PMC8042047 DOI: 10.1038/s41536-021-00134-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Successful progression from bench to bedside for regenerative medicine products is challenging and requires a multidisciplinary approach. What has not yet been fully recognised is the potential for quantitative data analysis and mathematical modelling approaches to support this process. In this review, we highlight the wealth of opportunities for embedding mathematical and computational approaches within all stages of the regenerative medicine pipeline. We explore how exploiting quantitative mathematical and computational approaches, alongside state-of-the-art regenerative medicine research, can lead to therapies that potentially can be more rapidly translated into the clinic.
Collapse
Affiliation(s)
- S L Waters
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - L J Schumacher
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - A J El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
8
|
Price JC, Krause AL, Waters SL, El Haj AJ. Predicting Bone Formation in Mesenchymal Stromal Cell-Seeded Hydrogels Using Experiment-Based Mathematical Modeling. Tissue Eng Part A 2020; 26:1014-1023. [PMID: 32178595 DOI: 10.1089/ten.tea.2020.0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In vitro bone formation by mesenchymal stromal cells encapsulated in type-1 collagen hydrogels is demonstrated after a 28-day in vitro culture period. Analysis of the hydrogels is carried out by X-ray microcomputed tomography, histology, and immunohistochemistry, which collectively demonstrates that bone formation in the hydrogels was quantifiably proportional to the initial collagen concentration, and subsequently the population density of seeded cells. This was established by varying the initial collagen concentration at a constant cell seeding density (3 × 105 cells/0.3 mL hydrogel), and separately varying cell seeding density at a constant collagen concentration (1 mg/mL). Using these data, a mathematical model is presented for the total hydrogel volume and mineralization volume based on the observed linear contraction dynamics of cell-seeded collagen gels. The model parameters are fitted by comparing the predictions of the mathematical model for the hydrogel and mineralized volumes on day 28 with the experimental data. The model is then used to predict the hydrogel and mineralization volumes for a range of hydrogel collagen concentrations and cell seeding densities, providing comprehensive input/output descriptors for generating mineralized hydrogels for bone tissue engineering. It is proposed that this quantitative approach will be a useful tool for generating in vitro manufactured bone tissue, defining input parameters that yield predictable output measures of tissue maturation. Impact statement This article describes a simple yet powerful quantitative description of in vitro tissue-engineered bone by combining experimental data with mathematical modeling. The overall aim of the article is to examine what is currently known about cell-mediated collagen contraction, and demonstrate that this phenomenon can be exploited to tailor bone formation by choosing a specific set of input parameters in the form of cell seeding density and collagen hydrogel concentration. Our study utilizes a clinically relevant cell source (human mesenchymal stem cells) with a biomaterial that has received regulatory approval for use in humans (collagen type 1), and hence could be useful for clinical applications, as well as furthering our understanding of cell/extracellular matrix interactions in determining in vitro bone tissue formation.
Collapse
Affiliation(s)
- Joshua C Price
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, United Kingdom
- Optics and Photonics Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, United Kingdom
| | - Andrew L Krause
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Alicia J El Haj
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, United Kingdom
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Krause AL, Beliaev D, Van Gorder RA, Waters SL. Lattice and continuum modelling of a bioactive porous tissue scaffold. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2019; 36:325-360. [PMID: 30107530 DOI: 10.1093/imammb/dqy012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/18/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
A contemporary procedure to grow artificial tissue is to seed cells onto a porous biomaterial scaffold and culture it within a perfusion bioreactor to facilitate the transport of nutrients to growing cells. Typical models of cell growth for tissue engineering applications make use of spatially homogeneous or spatially continuous equations to model cell growth, flow of culture medium, nutrient transport and their interactions. The network structure of the physical porous scaffold is often incorporated through parameters in these models, either phenomenologically or through techniques like mathematical homogenization. We derive a model on a square grid lattice to demonstrate the importance of explicitly modelling the network structure of the porous scaffold and compare results from this model with those from a modified continuum model from the literature. We capture two-way coupling between cell growth and fluid flow by allowing cells to block pores, and by allowing the shear stress of the fluid to affect cell growth and death. We explore a range of parameters for both models and demonstrate quantitative and qualitative differences between predictions from each of these approaches, including spatial pattern formation and local oscillations in cell density present only in the lattice model. These differences suggest that for some parameter regimes, corresponding to specific cell types and scaffold geometries, the lattice model gives qualitatively different model predictions than typical continuum models. Our results inform model selection for bioactive porous tissue scaffolds, aiding in the development of successful tissue engineering experiments and eventually clinically successful technologies.
Collapse
Affiliation(s)
- Andrew L Krause
- Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory Quarter, Woodstock Rd, UK
| | - Dmitry Beliaev
- Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory Quarter, Woodstock Rd, UK
| | - Robert A Van Gorder
- Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory Quarter, Woodstock Rd, UK
| | - Sarah L Waters
- Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory Quarter, Woodstock Rd, UK
| |
Collapse
|