1
|
Subramanian H. Joint optimization of replicative rate and information storage set the letter size of primordial genetic alphabet. Biosystems 2025; 251:105442. [PMID: 40081460 DOI: 10.1016/j.biosystems.2025.105442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/01/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
The simplest possible informational heteropolymer requires only a two-letter alphabet to be able to store information. The evolutionary choice of four monomers in the informational biomolecules RNA/DNA or their progenitors is intriguing, given the inherent difficulties in the simultaneous and localized prebiotic synthesis of all four monomers of progenitors of RNA/DNA from common precursors on early Earth. Excluding the scenario where a two-letter alphabet genome eventually expanded to include two more letters to code for more amino acids on teleological grounds, we show here that a replicatively superior heteropolymer sequence in an RNA-world-like scenario would have to be composed of at least four letters in order to predictably fold into a specific secondary structure, and hence must have out-competed the two-letter alphabet genomes. As a consequence of our earlier demonstration of the replicative rate advantage of maximal-nucleotide-skew sequences, in this follow-up article, we show that the competing constraints of maximum replicative rate and predictable secondary structure formation can be simultaneously satisfied only by maximally-skewed palindromic heteropolymer sequences composed of a minimum of four letters.
Collapse
|
2
|
Gatenby RA, Gallaher J, Subramanian H, Hammarlund EU, Whelan CJ. On the Origin of Information Dynamics in Early Life. Life (Basel) 2025; 15:234. [PMID: 40003644 PMCID: PMC11856217 DOI: 10.3390/life15020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
We hypothesize that predictable variations in environmental conditions caused by night/day cycles created opportunities and hazards that initiated information dynamics central to life's origin. Increased daytime temperatures accelerated key chemical reactions but also caused the separation of double-stranded polynucleotides, leading to hydrolysis, particularly of single-stranded RNA. Daytime solar UV radiation promoted the synthesis of organic molecules but caused broad damage to protocell macromolecules. We hypothesize that inter-related simultaneous adaptations to these hazards produced molecular dynamics necessary to store and use information. Self-replicating RNA heritably reduced the hydrolysis of single strands after separation during warmer daytime periods by promoting sequences that formed hairpin loops, generating precursors to transfer RNA (tRNA), and initiating tRNA-directed evolutionary dynamics. Protocell survival during daytime promoted sequences in self-replicating RNA within protocells that formed RNA-peptide hybrids capable of scavenging UV-induced free radicals or catalyzing melanin synthesis from tyrosine. The RNA-peptide hybrids are precursors to ribosomes and the triplet codes for RNA-directed protein synthesis. The protective effects of melanin production persist as melanosomes are found throughout the tree of life. Similarly, adaptations mitigating UV damage led to the replacement of Na+ by K+ as the dominant mobile cytoplasmic cation to promote diel vertical migration and selected for homochirality. We conclude that information dynamics emerged in early life through adaptations to predictably fluctuating opportunities and hazards during night/day cycles, and its legacy remains observable in extant life.
Collapse
Affiliation(s)
- Robert A. Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL 33612, USA; (R.A.G.); (J.G.)
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jill Gallaher
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL 33612, USA; (R.A.G.); (J.G.)
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Emma U. Hammarlund
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden;
| | - Christopher J. Whelan
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL 33612, USA; (R.A.G.); (J.G.)
- Metabolism and Physiology Department Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Sahu P, Barik S, Ghosh K, Subramanian H. High Nucleotide Skew Palindromic DNA Sequences Function as Potential Replication Origins due to their Unzipping Propensity. J Mol Evol 2024; 92:761-775. [PMID: 39313579 DOI: 10.1007/s00239-024-10202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Locations of DNA replication initiation in prokaryotes, called "origins of replication", are well-characterized. However, a mechanistic understanding of the sequence dependence of the local unzipping of double-stranded DNA, the first step towards replication initiation, is lacking. Here, utilizing a Markov chain model that was created to address the directional nature of DNA unzipping and replication, we model the sequence dependence of local melting of double-stranded linear DNA segments. We show that generalized palindromic sequences with high nucleotide skews have a low kinetic barrier for local melting near melting temperatures. This allows for such sequences to function as potential replication origins. We support our claim with evidence for high-skew palindromic sequences within the replication origins of mitochondrial DNA, bacteria, archaea and plasmids.
Collapse
Affiliation(s)
- Parthasarathi Sahu
- Department of Physics, National Institute of Technology, Durgapur, India
| | - Sashikanta Barik
- Department of Physics, National Institute of Technology, Durgapur, India
| | - Koushik Ghosh
- Department of Physics, National Institute of Technology, Durgapur, India
| | | |
Collapse
|
4
|
Fiore M, Chieffo C, Lopez A, Fayolle D, Ruiz J, Soulère L, Oger P, Altamura E, Popowycz F, Buchet R. Synthesis of Phospholipids Under Plausible Prebiotic Conditions and Analogies with Phospholipid Biochemistry for Origin of Life Studies. ASTROBIOLOGY 2022; 22:598-627. [PMID: 35196460 DOI: 10.1089/ast.2021.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phospholipids are essential components of biological membranes and are involved in cell signalization, in several enzymatic reactions, and in energy metabolism. In addition, phospholipids represent an evolutionary and non-negligible step in life emergence. Progress in the past decades has led to a deeper understanding of these unique hydrophobic molecules and their most pertinent functions in cell biology. Today, a growing interest in "prebiotic lipidomics" calls for a new assessment of these relevant biomolecules.
Collapse
Affiliation(s)
- Michele Fiore
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Carolina Chieffo
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Augustin Lopez
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Dimitri Fayolle
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Johal Ruiz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Laurent Soulère
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Philippe Oger
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Université de Lyon, Claude Bernard Lyon 1, Villeurbanne, France
| | - Emiliano Altamura
- Chemistry Department, Università degli studi di Bari "Aldo Moro," Bari, Italy
| | - Florence Popowycz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - René Buchet
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| |
Collapse
|
5
|
Abstract
Either stereo reactants or stereo catalysis from achiral or chiral molecules are a prerequisite to obtain pure enantiomeric lipid derivatives. We reviewed a few plausibly organic syntheses of phospholipids under prebiotic conditions with special attention paid to the starting materials as pro-chiral dihydroxyacetone and dihydroxyacetone phosphate (DHAP), which are the key molecules to break symmetry in phospholipids. The advantages of homochiral membranes compared to those of heterochiral membranes were analysed in terms of specific recognition, optimal functions of enzymes, membrane fluidity and topological packing. All biological membranes contain enantiomerically pure lipids in modern bacteria, eukarya and archaea. The contemporary archaea, comprising of methanogens, halobacteria and thermoacidophiles, are living under extreme conditions reminiscent of primitive environment and may indicate the origin of one ancient evolution path of lipid biosynthesis. The analysis of the known lipid metabolism reveals that all modern cells including archaea synthetize enantiomerically pure lipid precursors from prochiral DHAP. Sn-glycerol-1-phosphate dehydrogenase (G1PDH), usually found in archaea, catalyses the formation of sn-glycerol-1-phosphate (G1P), while sn-glycerol-3-phosphate dehydrogenase (G3PDH) catalyses the formation of sn-glycerol-3-phosphate (G3P) in bacteria and eukarya. The selective enzymatic activity seems to be the main strategy that evolution retained to obtain enantiomerically pure lipids. The occurrence of two genes encoding for G1PDH and G3PDH served to build up an evolutionary tree being the basis of our hypothesis article focusing on the evolution of these two genes. Gene encoding for G3PDH in eukarya may originate from G3PDH gene found in rare archaea indicating that archaea appeared earlier in the evolutionary tree than eukarya. Archaea and bacteria evolved probably separately, due to their distinct respective genes coding for G1PDH and G3PDH. We propose that prochiral DHAP is an essential molecule since it provides a convergent link between G1DPH and G3PDH. The synthesis of enantiopure phospholipids from DHAP appeared probably firstly in the presence of chemical catalysts, before being catalysed by enzymes which were the products of later Darwinian selection. The enzymes were probably selected for their efficient catalytic activities during evolution from large libraries of vesicles containing amino acids, carbohydrates, nucleic acids, lipids, and meteorite components that induced symmetry imbalance.
Collapse
|
6
|
Subramanian H, Brown J, Gatenby R. Prebiotic competition and evolution in self-replicating polynucleotides can explain the properties of DNA/RNA in modern living systems. BMC Evol Biol 2020; 20:75. [PMID: 32590933 PMCID: PMC7318430 DOI: 10.1186/s12862-020-01641-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We hypothesize prebiotic evolution of self-replicating macro-molecules (Alberts, Molecular biology of the cell, 2015; Orgel, Crit Rev Biochem Mol Biol 39:99-123, 2004; Hud, Nat Commun 9:5171) favoured the constituent nucleotides and biophysical properties observed in the RNA and DNA of modern organisms. Assumed initial conditions are a shallow tide pool, containing a racemic mix of diverse nucleotide monomers (Barks et al., Chembiochem 11:1240-1243, 2010; Krishnamurthy, Nat Commun 9:5175, 2018; Hirao, Curr Opin Chem Biol 10:622-627), subject to day/night thermal fluctuations (Piccirilli et al., Nature 343:33-37, 1990). Self-replication, like Polymerase Chain Reactions, followed as higher daytime thermal energy "melted" inter-strand hydrogen bonds causing strand separation while solar UV radiation increased prebiotic nucleobase formation (Szathmary, Proc Biol Sci 245:91-99, 1991; Materese et al., Astrobiology 17:761-770, 2017; Bera et al., Astrobiology 17:771-785, 2017). Lower night energies allowed free monomers to form hydrogen bonds with their template counterparts leading to daughter strand synthesis (Hirao, Biotechniques 40:711, 2006). RESULTS Evolutionary selection favoured increasing strand length to maximize auto-catalytic function in RNA and polymer stability in double stranded DNA (Krishnamurthy, Chemistry 24:16708-16715, 2018; Szathmary, Nat Rev Genet 4:995-1001, 2003). However, synthesis of the full daughter strand before daytime temperatures produced strand separation, longer polymer length required increased speed of self-replication. Computer simulations demonstrate optimal polynucleotide autocatalytic speed is achieved when the constituent nucleotides possess a left-right asymmetry that decreases the hydrogen bond kinetic barrier for the free nucleotide attachment to the template on one side and increases bond barrier on the other side preventing it from releasing prior to covalent bond formation. This phenomenon is similar to asymmetric kinetics observed during polymerization of the front and the back ends of linear cytoskeletal proteins such as actin and microtubules (Orgel, Nature 343:18-20, 1990; Henry, Curr Opin Chem Biol 7:727-733, 2003; Walker et al., J Cell Biol 108:931-937, 1989; Crevenna et al., J Biol Chem 288:12102-12113, 2013). Since rotation of the nucleotide would disrupt the asymmetry, the optimal nucleotides must form two or more hydrogen bonds with their counterpart on the template strand. All nucleotides in modern RNA and DNA have these predicted properties. Our models demonstrate these constraints on the properties of constituent monomers result in biophysical properties found in modern DNA and RNA including strand directionality, anti-parallel strand orientation, homochirality, quadruplet alphabet, and complementary base pairing. Furthermore, competition between RNA and DNA auto-replicators for 3 nucleotides in common permit states coexistence and possible cooperative interactions that could be incorporated into nascent living systems. CONCLUSION Our findings demonstrate the molecular properties of DNA/RNA could have emerged from Darwinian competition among macromolecular replicators that selected nucleotide monomers that maximized the speed of autocatalysis.
Collapse
Affiliation(s)
- Hemachander Subramanian
- Cancer Biology and Evolution Program, Tampa, FL, 33612, USA.,Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA.,Present Address: Department of Physics, National Institute of Technology, Durgapur, West Bengal, India
| | - Joel Brown
- Cancer Biology and Evolution Program, Tampa, FL, 33612, USA.,Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Robert Gatenby
- Cancer Biology and Evolution Program, Tampa, FL, 33612, USA. .,Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Subramanian H, Gatenby RA. Evolutionary advantage of anti-parallel strand orientation of duplex DNA. Sci Rep 2020; 10:9883. [PMID: 32555277 PMCID: PMC7303137 DOI: 10.1038/s41598-020-66705-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022] Open
Abstract
DNA in all living systems shares common properties that are remarkably well suited to its function, suggesting refinement by evolution. However, DNA also shares some counter-intuitive properties which confer no obvious benefit, such as strand directionality and anti-parallel strand orientation, which together result in the complicated lagging strand replication. The evolutionary dynamics that led to these properties of DNA remain unknown but their universality suggests that they confer as yet unknown selective advantage to DNA. In this article, we identify an evolutionary advantage of anti-parallel strand orientation of duplex DNA, within a given set of plausible premises. The advantage stems from the increased rate of replication, achieved by dividing the DNA into predictable, independently and simultaneously replicating segments, as opposed to sequentially replicating the entire DNA, thereby parallelizing the replication process. We show that anti-parallel strand orientation is essential for such a replicative organization of DNA, given our premises, the most important of which is the assumption of the presence of sequence-dependent asymmetric cooperativity in DNA.
Collapse
Affiliation(s)
| | - Robert A Gatenby
- Integrated Mathematical Oncology Department, Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902, USF Magnolia Dr, Tampa, Florida, USA
| |
Collapse
|
8
|
Subramanian H, Gatenby RA. Chiral Monomers Ensure Orientational Specificity of Monomer Binding During Polymer Self-Replication. J Mol Evol 2018; 86:255-263. [PMID: 29725703 DOI: 10.1007/s00239-018-9845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/26/2018] [Indexed: 11/25/2022]
Abstract
Biomolecular homochirality is universally observed in living systems but the molecular and evolutionary dynamics that led to its emergence are unknown. In fact, there are significant disadvantages in using chiral monomers for polymerization, which include enantiomeric cross-inhibition in racemic medium and under-utilization of available resources for self-replication in the primordial environment. Nevertheless, most investigations of homochirality in living systems assume that the individual primordial monomers were chiral prior to the formation of self-replicating polymer and therefore focus on identifying a symmetry-breaking mechanism that might choose one enantiomer over the other in a racemic medium. Within the premise that the extant biomolecules are products of molecular evolution, we ask a related but distinct question: why is an achiral monomer molecule disfavored? Here we identify an evolutionary advantage for molecular evolution to choose chiral over achiral monomers to construct primordial self-replicating polymers. We argue that when polymerization is constrained to proceed in only one direction along the template, as in DNA, evolution favors chiral monomers and homochiral polymers. This evolutionary advantage stems from the ability of a chiral monomer to bond with the template in only one orientation relative to the template monomer, along the direction of polymerization. An achiral monomer, on the other hand, offers more than one possible orientation for bonding with the template monomer, due to the presence of symmetry elements in its structure, which would lead to inhibition of polymerization. We show that the requirement of orientational specificity leads to monomer chirality, by using a known relationship between rotational and reflection symmetry elements, within the constraint that the resultant polymers are helical.
Collapse
Affiliation(s)
- Hemachander Subramanian
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Robert A Gatenby
- Integrated Mathematical Oncology Department and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|