1
|
Shahid, Hayat M, Alghamdi W, Akbar S, Raza A, Kadir RA, Sarker MR. pACP-HybDeep: predicting anticancer peptides using binary tree growth based transformer and structural feature encoding with deep-hybrid learning. Sci Rep 2025; 15:565. [PMID: 39747941 PMCID: PMC11695694 DOI: 10.1038/s41598-024-84146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Worldwide, Cancer remains a significant health concern due to its high mortality rates. Despite numerous traditional therapies and wet-laboratory methods for treating cancer-affected cells, these approaches often face limitations, including high costs and substantial side effects. Recently the high selectivity of peptides has garnered significant attention from scientists due to their reliable targeted actions and minimal adverse effects. Furthermore, keeping the significant outcomes of the existing computational models, we propose a highly reliable and effective model namely, pACP-HybDeep for the accurate prediction of anticancer peptides. In this model, training peptides are numerically encoded using an attention-based ProtBERT-BFD encoder to extract semantic features along with CTDT-based structural information. Furthermore, a k-nearest neighbor-based binary tree growth (BTG) algorithm is employed to select an optimal feature set from the multi-perspective vector. The selected feature vector is subsequently trained using a CNN + RNN-based deep learning model. Our proposed pACP-HybDeep model demonstrated a high training accuracy of 95.33%, and an AUC of 0.97. To validate the generalization capabilities of the model, our pACP-HybDeep model achieved accuracies of 94.92%, 92.26%, and 91.16% on independent datasets Ind-S1, Ind-S2, and Ind-S3, respectively. The demonstrated efficacy, and reliability of the pACP-HybDeep model using test datasets establish it as a valuable tool for researchers in academia and pharmaceutical drug design.
Collapse
Affiliation(s)
- Shahid
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan.
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Ali Raza
- Department of Computer Science, MY University, Islamabad, 45750, Pakistan
| | - Rabiah Abdul Kadir
- Institute of Visual Informatics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Mahidur R Sarker
- Institute of Visual Informatics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Universidad de Dise˜no, Innovaci´on y Tecnología, UDIT, Av. Alfonso XIII, 97, 28016, Madrid, Spain
| |
Collapse
|
2
|
Karim A, Alkhalifah T, Alturise F, Khan YD. PADG-Pred: Exploring Ensemble Approaches for Identifying Parkinson's Disease Associated Biomarkers Using Genomic Sequences Analysis. IET Syst Biol 2025; 19:e70006. [PMID: 40088455 PMCID: PMC11910177 DOI: 10.1049/syb2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/04/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025] Open
Abstract
Parkinson's disease (PD), a degenerative disorder affecting the nervous system, manifests as unbalanced movements, stiffness, tremors, and coordination difficulties. Its cause, believed to involve genetic and environmental factors, underscores the critical need for prompt diagnosis and intervention to enhance treatment effectiveness. Despite the array of available diagnostics, their reliability remains a challenge. In this study, an innovative predictor PADG-Pred is proposed for the identification of Parkinson's associated biomarkers, utilising a genomic profile. In this study, a novel predictor, PADG-Pred, which not only identifies Parkinson's associated biomarkers through genomic profiling but also uniquely integrates multiple statistical feature extraction techniques with ensemble-based classification frameworks, thereby providing a more robust and interpretable decision-making process than existing tools. The processed dataset was utilised for feature extraction through multiple statistical moments and it is further involved in extensive training of the model using diverse classification techniques, encompassing Ensemble methods; XGBoost, Random Forest, Light Gradient Boosting Machine, Bagging, ExtraTrees, and Stacking. State-of-the-art validation procedures are applied, assessing key metrics such as specificity, accuracy, sensitivity/recall, and Mathew's correlation coefficient. The outcomes demonstrate the outstanding performance of PADG-RF, showcasing accuracy metrics consistently achieving ∼91% for the independent set, ∼94% for 5-fold, and ∼96% for 10-fold in cross-validation.
Collapse
Affiliation(s)
- Ayesha Karim
- Department of Computer ScienceSchool of Systems and Technology University of Management and TechnologyLahorePakistan
| | - Tamim Alkhalifah
- Department of Computer Engineering, College of ComputerQassim UniversityBuraydahSaudi Arabia
| | - Fahad Alturise
- Department of CybersecurityCollege of ComputerQassim UniversityBuraydahSaudi Arabia
| | - Yaser Daanial Khan
- Department of Computer ScienceSchool of Systems and Technology University of Management and TechnologyLahorePakistan
| |
Collapse
|
3
|
Karim A, Alromema N, Malebary SJ, Binzagr F, Ahmed A, Khan YD. eNSMBL-PASD: Spearheading early autism spectrum disorder detection through advanced genomic computational frameworks utilizing ensemble learning models. Digit Health 2025; 11:20552076241313407. [PMID: 39872002 PMCID: PMC11770729 DOI: 10.1177/20552076241313407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Objective Autism spectrum disorder (ASD) is a complex neurodevelopmental condition influenced by various genetic and environmental factors. Currently, there is no definitive clinical test, such as a blood analysis or brain scan, for early diagnosis. The objective of this study is to develop a computational model that predicts ASD driver genes in the early stages using genomic data, aiming to enhance early diagnosis and intervention. Methods This study utilized a benchmark genomic dataset, which was processed using feature extraction techniques to identify relevant genetic patterns. Several ensemble classification methods, including Extreme Gradient Boosting, Random Forest, Light Gradient Boosting Machine, ExtraTrees, and a stacked ensemble of classifiers, were applied to assess the predictive power of the genomic features. TheEnsemble Model Predictor for Autism Spectrum Disorder (eNSMBL-PASD) model was rigorously validated using multiple performance metrics such as accuracy, sensitivity, specificity, and Mathew's correlation coefficient. Results The proposed model demonstrated superior performance across various validation techniques. The self-consistency test achieved 100% accuracy, while the independent set and cross-validation tests yielded 91% and 87% accuracy, respectively. These results highlight the model's robustness and reliability in predicting ASD-related genes. Conclusion The eNSMBL-PASD model provides a promising tool for the early detection of ASD by identifying genetic markers associated with the disorder. In the future, this model has the potential to assist healthcare professionals, particularly doctors and psychologists, in diagnosing and formulating treatment plans for ASD at its earliest stages.
Collapse
Affiliation(s)
- Ayesha Karim
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Nashwan Alromema
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Sharaf J Malebary
- Department of Information Technology, Faculty of Computing and Information Technology, King AbdulAziz University, Rabigh, Saudi Arabia
| | - Faisal Binzagr
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Amir Ahmed
- College of Information Technology, Information Systems and Security, United Arab Emirates University, Alain, United Arab Emirates
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
4
|
Huang J, Wang X, Xia R, Yang D, Liu J, Lv Q, Yu X, Meng J, Chen K, Song B, Wang Y. Domain-knowledge enabled ensemble learning of 5-formylcytosine (f5C) modification sites. Comput Struct Biotechnol J 2024; 23:3175-3185. [PMID: 39253057 PMCID: PMC11381828 DOI: 10.1016/j.csbj.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
5-formylcytidine (f5C) is a unique post-transcriptional RNA modification found in mRNA and tRNA at the wobble site, playing a crucial role in mitochondrial protein synthesis and potentially contributing to the regulation of translation. Recent studies have unveiled that the f5C modifications may drive mitochondrial mRNA translation to power cancer metastasis. Accurate identification of f5C sites is essential for further unraveling their molecular functions and regulatory mechanisms, but there are currently no computational methods available for predicting their locations. In this study, we introduce an innovative ensemble approach, successfully enabling the computational recognition of Saccharomyces cerevisiae f5C. We conducted a comprehensive model selection process that involved multiple basic machine learning and deep learning algorithms such as recurrent neural networks, convolutional neural networks and Transformer-based models. Initially trained only on sequence information, these individual models achieved an AUROC ranging from 0.7104 to 0.7492. Through the integration of 32 novel domain-derived genomic features, the performance of individual models has significantly improved to an AUROC between 0.7309 and 0.8076. To further enhance accuracy and robustness, we then constructed the ensembles of these individual models with different combinations. The best performance attained by our ensemble models reached an AUROC of 0.8391. Shapley additive explanations were conducted to explain the significant contributions of genomic features, providing insights into the putative distribution of f5C across various topological regions and potentially paving the way for revealing their functional relevance within distinct genomic contexts. A freely accessible web server that allows real-time analysis of user-uploaded sites can be accessed at: www.rnamd.org/Resf5C-Pred.
Collapse
Affiliation(s)
- Jiaming Huang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xuan Wang
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Rong Xia
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Dongqing Yang
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoxuan Yu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Meng
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Bowen Song
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Luo Z, Yu L, Xu Z, Liu K, Gu L. Comprehensive Review and Assessment of Computational Methods for Prediction of N6-Methyladenosine Sites. BIOLOGY 2024; 13:777. [PMID: 39452086 PMCID: PMC11504118 DOI: 10.3390/biology13100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
N6-methyladenosine (m6A) plays a crucial regulatory role in the control of cellular functions and gene expression. Recent advances in sequencing techniques for transcriptome-wide m6A mapping have accelerated the accumulation of m6A site information at a single-nucleotide level, providing more high-confidence training data to develop computational approaches for m6A site prediction. However, it is still a major challenge to precisely predict m6A sites using in silico approaches. To advance the computational support for m6A site identification, here, we curated 13 up-to-date benchmark datasets from nine different species (i.e., H. sapiens, M. musculus, Rat, S. cerevisiae, Zebrafish, A. thaliana, Pig, Rhesus, and Chimpanzee). This will assist the research community in conducting an unbiased evaluation of alternative approaches and support future research on m6A modification. We revisited 52 computational approaches published since 2015 for m6A site identification, including 30 traditional machine learning-based, 14 deep learning-based, and 8 ensemble learning-based methods. We comprehensively reviewed these computational approaches in terms of their training datasets, calculated features, computational methodologies, performance evaluation strategy, and webserver/software usability. Using these benchmark datasets, we benchmarked nine predictors with available online websites or stand-alone software and assessed their prediction performance. We found that deep learning and traditional machine learning approaches generally outperformed scoring function-based approaches. In summary, the curated benchmark dataset repository and the systematic assessment in this study serve to inform the design and implementation of state-of-the-art computational approaches for m6A identification and facilitate more rigorous comparisons of new methods in the future.
Collapse
Affiliation(s)
- Zhengtao Luo
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| | - Liyi Yu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Zhaochun Xu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Kening Liu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Lichuan Gu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Malik A, Kamli MR, Sabir JSM, Rather IA, Phan LT, Kim CB, Manavalan B. APLpred: A machine learning-based tool for accurate prediction and characterization of asparagine peptide lyases using sequence-derived optimal features. Methods 2024; 229:133-146. [PMID: 38944134 DOI: 10.1016/j.ymeth.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 07/01/2024] Open
Abstract
Asparagine peptide lyase (APL) is among the seven groups of proteases, also known as proteolytic enzymes, which are classified according to their catalytic residue. APLs are synthesized as precursors or propeptides that undergo self-cleavage through autoproteolytic reaction. At present, APLs are grouped into 10 families belonging to six different clans of proteases. Recognizing their critical roles in many biological processes including virus maturation, and virulence, accurate identification and characterization of APLs is indispensable. Experimental identification and characterization of APLs is laborious and time-consuming. Here, we developed APLpred, a novel support vector machine (SVM) based predictor that can predict APLs from the primary sequences. APLpred was developed using Boruta-based optimal features derived from seven encodings and subsequently trained using five machine learning algorithms. After evaluating each model on an independent dataset, we selected APLpred (an SVM-based model) due to its consistent performance during cross-validation and independent evaluation. We anticipate APLpred will be an effective tool for identifying APLs. This could aid in designing inhibitors against these enzymes and exploring their functions. The APLpred web server is freely available at https://procarb.org/APLpred/.
Collapse
Affiliation(s)
- Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Irfan A Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Le Thi Phan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
7
|
Rukh G, Akbar S, Rehman G, Alarfaj FK, Zou Q. StackedEnC-AOP: prediction of antioxidant proteins using transform evolutionary and sequential features based multi-scale vector with stacked ensemble learning. BMC Bioinformatics 2024; 25:256. [PMID: 39098908 PMCID: PMC11298090 DOI: 10.1186/s12859-024-05884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Antioxidant proteins are involved in several biological processes and can protect DNA and cells from the damage of free radicals. These proteins regulate the body's oxidative stress and perform a significant role in many antioxidant-based drugs. The current invitro-based medications are costly, time-consuming, and unable to efficiently screen and identify the targeted motif of antioxidant proteins. METHODS In this model, we proposed an accurate prediction method to discriminate antioxidant proteins namely StackedEnC-AOP. The training sequences are formulation encoded via incorporating a discrete wavelet transform (DWT) into the evolutionary matrix to decompose the PSSM-based images via two levels of DWT to form a Pseudo position-specific scoring matrix (PsePSSM-DWT) based embedded vector. Additionally, the Evolutionary difference formula and composite physiochemical properties methods are also employed to collect the structural and sequential descriptors. Then the combined vector of sequential features, evolutionary descriptors, and physiochemical properties is produced to cover the flaws of individual encoding schemes. To reduce the computational cost of the combined features vector, the optimal features are chosen using Minimum redundancy and maximum relevance (mRMR). The optimal feature vector is trained using a stacking-based ensemble meta-model. RESULTS Our developed StackedEnC-AOP method reported a prediction accuracy of 98.40% and an AUC of 0.99 via training sequences. To evaluate model validation, the StackedEnC-AOP training model using an independent set achieved an accuracy of 96.92% and an AUC of 0.98. CONCLUSION Our proposed StackedEnC-AOP strategy performed significantly better than current computational models with a ~ 5% and ~ 3% improved accuracy via training and independent sets, respectively. The efficacy and consistency of our proposed StackedEnC-AOP make it a valuable tool for data scientists and can execute a key role in research academia and drug design.
Collapse
Affiliation(s)
- Gul Rukh
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Fawaz Khaled Alarfaj
- Department of Management Information Systems (MIS), School of Business, King Faisal University (KFU), 31982, Al-Ahsa, Saudi Arabia
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, People's Republic of China.
| |
Collapse
|
8
|
Naseem A, Khan YD. An intelligent model for prediction of abiotic stress-responsive microRNAs in plants using statistical moments based features and ensemble approaches. Methods 2024; 228:65-79. [PMID: 38768931 DOI: 10.1016/j.ymeth.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
This study proposed an intelligent model for predicting abiotic stress-responsive microRNAs in plants. MicroRNAs (miRNAs) are short RNA molecules regulates the stress in genes. Experimental methods are costly and time-consuming, as compare to in-silico prediction. Addressing this gap, the study seeks to develop an efficient computational model for plant stress response prediction. The two benchmark datasets for MiRNA and Pre-MiRNA dataset have been acquired in this study. Four ensemble approaches such as bagging, boosting, stacking, and blending have been employed. Classifiers such as Random Forest (RF), Extra Trees (ET), Ada Boost (ADB), Light Gradient Boosting Machine (LGBM), and Support Vector Machine (SVM). Stacking and Blending employed all stated classifiers as base learners and Logistic Regression (LR) as Meta Classifier. There have been a total of four types of testing used, including independent set, self-consistency, cross-validation with 5 and 10 folds, and jackknife. This study has utilized evaluation metrics such as accuracy score, specificity, sensitivity, Mathew's correlation coefficient (MCC), and AUC. Our proposed methodology has outperformed existing state of the art study in both datasets based on independent set testing. The SVM-based approach has exhibited accuracy score of 0.659 for the MiRNA dataset, which is better than the previous study. The ET classifier has surpassed the accuracy of Pre-MiRNA dataset as compared to the existing benchmark study, achieving an impressive score of 0.67. The proposed method can be used in future research to predict abiotic stresses in plants.
Collapse
Affiliation(s)
- Ansar Naseem
- Department of Artificial Intelligence, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
9
|
Bortoletto E, Rosani U. Bioinformatics for Inosine: Tools and Approaches to Trace This Elusive RNA Modification. Genes (Basel) 2024; 15:996. [PMID: 39202357 PMCID: PMC11353476 DOI: 10.3390/genes15080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Inosine is a nucleotide resulting from the deamination of adenosine in RNA. This chemical modification process, known as RNA editing, is typically mediated by a family of double-stranded RNA binding proteins named Adenosine Deaminase Acting on dsRNA (ADAR). While the presence of ADAR orthologs has been traced throughout the evolution of metazoans, the existence and extension of RNA editing have been characterized in a more limited number of animals so far. Undoubtedly, ADAR-mediated RNA editing plays a vital role in physiology, organismal development and disease, making the understanding of the evolutionary conservation of this phenomenon pivotal to a deep characterization of relevant biological processes. However, the lack of direct high-throughput methods to reveal RNA modifications at single nucleotide resolution limited an extended investigation of RNA editing. Nowadays, these methods have been developed, and appropriate bioinformatic pipelines are required to fully exploit this data, which can complement existing approaches to detect ADAR editing. Here, we review the current literature on the "bioinformatics for inosine" subject and we discuss future research avenues in the field.
Collapse
Affiliation(s)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
10
|
Fang Z, Sim N. Does lifelong learning matter for the subjective wellbeing of the elderly? A machine learning analysis on Singapore data. PLoS One 2024; 19:e0303478. [PMID: 38837996 DOI: 10.1371/journal.pone.0303478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Our study explores whether lifelong learning is associated with the subjective wellbeing among the elderly in Singapore. Through a primary survey of 300 individuals aged 65 and above, we develop a novel index to capture three different aspects of subjective wellbeing, which we term "Quality of Life", "Satisfaction with Life" and "Psychological Wellbeing". Utilizing both supervised and unsupervised machine learning techniques, our findings reveal that attitudes towards lifelong learning are positively associated with quality of life, while participation in class activities is positively associated with all three measures of wellbeing. Although the study does not establish causality, it highlights a connection between lifelong learning and the perceived wellbeing of the elderly, offering support for policies that encourage lifelong learning among this population.
Collapse
Affiliation(s)
- Zheng Fang
- Graduate Studies, Singapore University of Social Sciences, Singapore, Singapore
| | - Nicholas Sim
- School of Business, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
11
|
Arif R, Kanwal S, Ahmed S, Kabir M. A Computational Predictor for Accurate Identification of Tumor Homing Peptides by Integrating Sequential and Deep BiLSTM Features. Interdiscip Sci 2024; 16:503-518. [PMID: 38733473 DOI: 10.1007/s12539-024-00628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 05/13/2024]
Abstract
Cancer remains a severe illness, and current research indicates that tumor homing peptides (THPs) play an important part in cancer therapy. The identification of THPs can provide crucial insights for drug-discovery and pharmaceutical industries as they allow for tailored medication delivery towards cancer cells. These peptides have a high affinity enabling particular receptors present upon tumor surfaces, allowing for the creation of precision medications that reduce off-target consequences and enhance cancer patient treatment results. Wet-lab techniques are considered essential tools for studying THPs; however, they're labor-extensive and time-consuming, therefore making prediction of THPs a challenging task for the researchers. Computational-techniques, on the other hand, are considered significant tools in identifying THPs according to the sequence data. Despite many strategies have been presented to predict new THP, there is still a need to develop a robust method with higher rates of success. In this paper, we developed a novel framework, THP-DF, for accurately identifying THPs on a large-scale. Firstly, the peptide sequences are encoded through various sequential features. Secondly, each feature is passed to BiLSTM and attention layers to extract simplified deep features. Finally, an ensemble-framework is formed via integrating sequential- and deep features which are fed to a support vector machine which with 10-fold cross-validation to carry to validate the efficiency. The experimental results showed that THP-DF worked better on both [Formula: see text] and [Formula: see text] datasets by achieving accuracy of > 95% which are higher than existing predictors both datasets. This indicates that the proposed predictor could be a beneficial tool to precisely and rapidly identify THPs and will contribute to the cutting-edge cancer treatment strategies and pharmaceuticals.
Collapse
Affiliation(s)
- Roha Arif
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan
| | - Sameera Kanwal
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan
| | - Saeed Ahmed
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan
| | - Muhammad Kabir
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan.
| |
Collapse
|
12
|
Huang G, Huang X, Jiang J. Deepm6A-MT: A deep learning-based method for identifying RNA N6-methyladenosine sites in multiple tissues. Methods 2024; 226:1-8. [PMID: 38485031 DOI: 10.1016/j.ymeth.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent, abundant, and conserved internal modification in the eukaryotic messenger RNA (mRNAs) and plays a crucial role in the cellular process. Although more than ten methods were developed for m6A detection over the past decades, there were rooms left to improve the predictive accuracy and the efficiency. In this paper, we proposed an improved method for predicting m6A modification sites, which was based on bi-directional gated recurrent unit (Bi-GRU) and convolutional neural networks (CNN), called Deepm6A-MT. The Deepm6A-MT has two input channels. One is to use an embedding layer followed by the Bi-GRU and then by the CNN, and another is to use one-hot encoding, dinucleotide one-hot encoding, and nucleotide chemical property codes. We trained and evaluated the Deepm6A-MT both by the 5-fold cross-validation and the independent test. The empirical tests showed that the Deepm6A-MT achieved the state of the art performance. In addition, we also conducted the cross-species and the cross-tissues tests to further verify the Deepm6A-MT for effectiveness and efficiency. Finally, for the convenience of academic research, we deployed the Deepm6A-MT to the web server, which is accessed at the URL http://www.biolscience.cn/Deepm6A-MT/.
Collapse
Affiliation(s)
- Guohua Huang
- School of Information Technology and Administration, Hunan University of Finance and Economics, Changsha, Hunan 410205, China.
| | - Xiaohong Huang
- College of Information Science and Engineering, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Jinyun Jiang
- College of Information Science and Engineering, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
13
|
Akbar S, Zou Q, Raza A, Alarfaj FK. iAFPs-Mv-BiTCN: Predicting antifungal peptides using self-attention transformer embedding and transform evolutionary based multi-view features with bidirectional temporal convolutional networks. Artif Intell Med 2024; 151:102860. [PMID: 38552379 DOI: 10.1016/j.artmed.2024.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Globally, fungal infections have become a major health concern in humans. Fungal diseases generally occur due to the invading fungus appearing on a specific portion of the body and becoming hard for the human immune system to resist. The recent emergence of COVID-19 has intensely increased different nosocomial fungal infections. The existing wet-laboratory-based medications are expensive, time-consuming, and may have adverse side effects on normal cells. In the last decade, peptide therapeutics have gained significant attention due to their high specificity in targeting affected cells without affecting healthy cells. Motivated by the significance of peptide-based therapies, we developed a highly discriminative prediction scheme called iAFPs-Mv-BiTCN to predict antifungal peptides correctly. The training peptides are encoded using word embedding methods such as skip-gram and attention mechanism-based bidirectional encoder representation using transformer. Additionally, transform-based evolutionary features are generated using the Pseduo position-specific scoring matrix using discrete wavelet transform (PsePSSM-DWT). The fused vector of word embedding and evolutionary descriptors is formed to compensate for the limitations of single encoding methods. A Shapley Additive exPlanations (SHAP) based global interpolation approach is applied to reduce training costs by choosing the optimal feature set. The selected feature set is trained using a bi-directional temporal convolutional network (BiTCN). The proposed iAFPs-Mv-BiTCN model achieved a predictive accuracy of 98.15 % and an AUC of 0.99 using training samples. In the case of the independent samples, our model obtained an accuracy of 94.11 % and an AUC of 0.98. Our iAFPs-Mv-BiTCN model outperformed existing models with a ~4 % and ~5 % higher accuracy using training and independent samples, respectively. The reliability and efficacy of the proposed iAFPs-Mv-BiTCN model make it a valuable tool for scientists and may perform a beneficial role in pharmaceutical design and research academia.
Collapse
Affiliation(s)
- Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Department of Computer Science, Abdul Wali Khan University Mardan, KP 23200, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, PR China.
| | - Ali Raza
- Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, KP 25124, Pakistan
| | - Fawaz Khaled Alarfaj
- Department of Management Information Systems (MIS), School of Business, King Faisal University (KFU), Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
14
|
Akbar S, Raza A, Zou Q. Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model. BMC Bioinformatics 2024; 25:102. [PMID: 38454333 PMCID: PMC10921744 DOI: 10.1186/s12859-024-05726-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Viral infections have been the main health issue in the last decade. Antiviral peptides (AVPs) are a subclass of antimicrobial peptides (AMPs) with substantial potential to protect the human body against various viral diseases. However, there has been significant production of antiviral vaccines and medications. Recently, the development of AVPs as an antiviral agent suggests an effective way to treat virus-affected cells. Recently, the involvement of intelligent machine learning techniques for developing peptide-based therapeutic agents is becoming an increasing interest due to its significant outcomes. The existing wet-laboratory-based drugs are expensive, time-consuming, and cannot effectively perform in screening and predicting the targeted motif of antiviral peptides. METHODS In this paper, we proposed a novel computational model called Deepstacked-AVPs to discriminate AVPs accurately. The training sequences are numerically encoded using a novel Tri-segmentation-based position-specific scoring matrix (PSSM-TS) and word2vec-based semantic features. Composition/Transition/Distribution-Transition (CTDT) is also employed to represent the physiochemical properties based on structural features. Apart from these, the fused vector is formed using PSSM-TS features, semantic information, and CTDT descriptors to compensate for the limitations of single encoding methods. Information gain (IG) is applied to choose the optimal feature set. The selected features are trained using a stacked-ensemble classifier. RESULTS The proposed Deepstacked-AVPs model achieved a predictive accuracy of 96.60%%, an area under the curve (AUC) of 0.98, and a precision-recall (PR) value of 0.97 using training samples. In the case of the independent samples, our model obtained an accuracy of 95.15%, an AUC of 0.97, and a PR value of 0.97. CONCLUSION Our Deepstacked-AVPs model outperformed existing models with a ~ 4% and ~ 2% higher accuracy using training and independent samples, respectively. The reliability and efficacy of the proposed Deepstacked-AVPs model make it a valuable tool for scientists and may perform a beneficial role in pharmaceutical design and research academia.
Collapse
Affiliation(s)
- Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Ali Raza
- Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, 25124, KP, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, People's Republic of China.
| |
Collapse
|
15
|
Nopour R. Screening ovarian cancer by using risk factors: machine learning assists. Biomed Eng Online 2024; 23:18. [PMID: 38347611 PMCID: PMC10863117 DOI: 10.1186/s12938-024-01219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND AND AIM Ovarian cancer (OC) is a prevalent and aggressive malignancy that poses a significant public health challenge. The lack of preventive strategies for OC increases morbidity, mortality, and other negative consequences. Screening OC through risk prediction could be leveraged as a powerful strategy for preventive purposes that have not received much attention. So, this study aimed to leverage machine learning approaches as predictive assistance solutions to screen high-risk groups of OC and achieve practical preventive purposes. MATERIALS AND METHODS As this study is data-driven and retrospective in nature, we leveraged 1516 suspicious OC women data from one concentrated database belonging to six clinical settings in Sari City from 2015 to 2019. Six machine learning (ML) algorithms, including XG-Boost, Random Forest (RF), J-48, support vector machine (SVM), K-nearest neighbor (KNN), and artificial neural network (ANN) were leveraged to construct prediction models for OC. To choose the best model for predicting OC, we compared various prediction models built using the area under the receiver characteristic operator curve (AU-ROC). RESULTS Current experimental results revealed that the XG-Boost with AU-ROC = 0.93 (0.95 CI = [0.91-0.95]) was recognized as the best-performing model for predicting OC. CONCLUSIONS ML approaches possess significant predictive efficiency and interoperability to achieve powerful preventive strategies leveraging OC screening high-risk groups.
Collapse
Affiliation(s)
- Raoof Nopour
- Department of Health Information Management, Student Research Committee, School of Health Management and Information Sciences Branch, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Zhang L, Xiao K, Kong L. A computational method for small molecule-RNA binding sites identification by utilizing position specificity and complex network information. Biosystems 2024; 235:105094. [PMID: 38056591 DOI: 10.1016/j.biosystems.2023.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Some computational methods have been given for small molecule-RNA binding site identification due to that it plays a significant role in revealing biology function researches. However, it is still challenging to design an accurate model, especially for MCC. We designed a feature extraction technology from two aspects (position specificity and complex network information). Specifically, complex network was employed to express the space topological structure and sequence position information for improving prediction effect. Then, the features fused position specificity and complex network information were input into random forest classifier for model construction. The AUC of 88.22%, 77.92% and 81.46% were obtained on three independent datasets (RB19, CS71, RB78). Compared with the existing method, the best MCC were obtained on three datasets, which were 8.19%, 0.59% and 4.35% higher than the state-of-the-art prediction methods, respectively. The outstanding performances show that our method is a powerful tool to identify RNA binding sites, helping to the design RNA-targeting small molecule drugs. The data and resource codes are available at https://github.com/Kangxiaoneuq/PCN_RNAsite.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066000, PR China; Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, 066000, PR China.
| | - Kang Xiao
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066000, PR China.
| | - Liang Kong
- Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, 066000, PR China; School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066000, PR China.
| |
Collapse
|
17
|
Raza A, Uddin J, Almuhaimeed A, Akbar S, Zou Q, Ahmad A. AIPs-SnTCN: Predicting Anti-Inflammatory Peptides Using fastText and Transformer Encoder-Based Hybrid Word Embedding with Self-Normalized Temporal Convolutional Networks. J Chem Inf Model 2023; 63:6537-6554. [PMID: 37905969 DOI: 10.1021/acs.jcim.3c01563] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Inflammation is a biologically resistant response to harmful stimuli, such as infection, damaged cells, toxic chemicals, or tissue injuries. Its purpose is to eradicate pathogenic micro-organisms or irritants and facilitate tissue repair. Prolonged inflammation can result in chronic inflammatory diseases. However, wet-laboratory-based treatments are costly and time-consuming and may have adverse side effects on normal cells. In the past decade, peptide therapeutics have gained significant attention due to their high specificity in targeting affected cells without affecting healthy cells. Motivated by the significance of peptide-based therapies, we developed a highly discriminative prediction model called AIPs-SnTCN to predict anti-inflammatory peptides accurately. The peptide samples are encoded using word embedding techniques such as skip-gram and attention-based bidirectional encoder representation using a transformer (BERT). The conjoint triad feature (CTF) also collects structure-based cluster profile features. The fused vector of word embedding and sequential features is formed to compensate for the limitations of single encoding methods. Support vector machine-based recursive feature elimination (SVM-RFE) is applied to choose the ranking-based optimal space. The optimized feature space is trained by using an improved self-normalized temporal convolutional network (SnTCN). The AIPs-SnTCN model achieved a predictive accuracy of 95.86% and an AUC of 0.97 by using training samples. In the case of the alternate training data set, our model obtained an accuracy of 92.04% and an AUC of 0.96. The proposed AIPs-SnTCN model outperformed existing models with an ∼19% higher accuracy and an ∼14% higher AUC value. The reliability and efficacy of our AIPs-SnTCN model make it a valuable tool for scientists and may play a beneficial role in pharmaceutical design and research academia.
Collapse
Affiliation(s)
- Ali Raza
- Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa 25124, Pakistan
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Jamal Uddin
- Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa 25124, Pakistan
| | - Abdullah Almuhaimeed
- Digital Health Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, PR China
| | - Ashfaq Ahmad
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| |
Collapse
|
18
|
Bai J, Yang H, Wu C. MLACNN: an attention mechanism-based CNN architecture for predicting genome-wide DNA methylation. Theory Biosci 2023; 142:359-370. [PMID: 37648910 PMCID: PMC10564812 DOI: 10.1007/s12064-023-00402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleotide sequences and make better predictions of methylation. The model uses three coding methods to encode the original DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance.
Collapse
Affiliation(s)
- JianGuo Bai
- Shandong Jiaotong University, Jinan City, Shandong Province China
| | - Hai Yang
- Shandong Jiaotong University, Jinan City, Shandong Province China
| | - ChangDe Wu
- Shandong Jiaotong University, Jinan City, Shandong Province China
| |
Collapse
|
19
|
Meng Q, Schatten H, Zhou Q, Chen J. Crosstalk between m6A and coding/non-coding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY) 2023; 15:6577-6619. [PMID: 37437245 PMCID: PMC10373953 DOI: 10.18632/aging.204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most common and well-known internal RNA modifications that occur on mRNAs or ncRNAs. It affects various aspects of RNA metabolism, including splicing, stability, translocation, and translation. An abundance of evidence demonstrates that m6A plays a crucial role in various pathological and biological processes, especially in tumorigenesis and tumor progression. In this article, we introduce the potential functions of m6A regulators, including "writers" that install m6A marks, "erasers" that demethylate m6A, and "readers" that determine the fate of m6A-modified targets. We have conducted a review on the molecular functions of m6A, focusing on both coding and noncoding RNAs. Additionally, we have compiled an overview of the effects noncoding RNAs have on m6A regulators and explored the dual roles of m6A in the development and advancement of cancer. Our review also includes a detailed summary of the most advanced databases for m6A, state-of-the-art experimental and sequencing detection methods, and machine learning-based computational predictors for identifying m6A sites.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
20
|
Rehman MU, Tayara H, Chong KT. DL-m6A: Identification of N6-Methyladenosine Sites in Mammals Using Deep Learning Based on Different Encoding Schemes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:904-911. [PMID: 35857733 DOI: 10.1109/tcbb.2022.3192572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
N6-methyladenosine (m6A) is a common post-transcriptional alteration that plays a critical function in a variety of biological processes. Although experimental approaches for identifying m6A sites have been developed and deployed, they are currently expensive for transcriptome-wide m6A identification. Some computational strategies for identifying m6A sites have been presented as an effective complement to the experimental procedure. However, their performance still requires improvement. In this study, we have proposed a novel tool called DL-m6A for the identification of m6A sites in mammals using deep learning based on different encoding schemes. The proposed tool uses three encoding schemes which give the required contextual feature representation to the input RNA sequence. Later these contextual feature vectors individually go through several neural network layers for shallow feature extraction after which they are concatenated to a single feature vector. The concatenated feature map is then used by several other layers to extract the deep features so that the insight features of the sequence can be used for the prediction of m6A sites. The proposed tool is firstly evaluated on the tissue-specific dataset and later on a full transcript dataset. To ensure the generalizability of the tool we assessed the proposed model by training it on a full transcript dataset and test on the tissue-specific dataset. The achieved results by the proposed model have outperformed the existing tools. The results demonstrate that the proposed tool can be of great use for the biology experts and therefore a freely accessible web-server is created which can be accessed at: http://nsclbio.jbnu.ac.kr/tools/DL-m6A/.
Collapse
|
21
|
Taguchi YH. Bioinformatic tools for epitranscriptomics. Am J Physiol Cell Physiol 2023; 324:C447-C457. [PMID: 36468841 DOI: 10.1152/ajpcell.00437.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
The epitranscriptome, defined as RNA modifications that do not involve alterations in the nucleotide sequence, is a popular topic in the genomic sciences. Because we need massive computational techniques to identify epitranscriptomes within individual transcripts, many tools have been developed to infer epitranscriptomic sites as well as to process datasets using high-throughput sequencing. In this review, we summarize recent developments in epitranscriptome spatial detection and data analysis and discuss their progression.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, Japan
| |
Collapse
|
22
|
Zhang S, Wang J, Li X, Liang Y. M6A-GSMS: Computational identification of N 6-methyladenosine sites with GBDT and stacking learning in multiple species. J Biomol Struct Dyn 2022; 40:12380-12391. [PMID: 34459713 DOI: 10.1080/07391102.2021.1970628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
N6-methyladenosine (m6A) is one of the most abundant forms of RNA methylation modifications currently known. It involves a wide range of biological processes, including degradation, stability, alternative splicing, etc. Therefore, the development of convenient and efficient m6A prediction technologies are urgent. In this work, a novel predictor based on GBDT and stacking learning is developed to identify m6A sites, which is called M6A-GSMS. To achieve accurate prediction, we explore RNA sequence information from four aspects: correlation, structure, physicochemical properties and pseudo ribonucleic acid composition. After using the GBDT algorithm for feature selection, a stacking model is constructed by combining seven basic classifiers. Compared with other state-of-the-art methods, the results show that M6A-GSMS can obtain excellent performance for identifying the m6A sites. The prediction accuracy of A.thaliana, D.melanogaster, M.musculus, S.cerevisiae and Human reaches 88.4%, 60.8%, 80.5%, 92.4% and 61.8%, respectively. This method provides an effective prediction for the investigation of m6A sites. In addition, all the datasets and codes are currently available at https://github.com/Wang-Jinyue/M6A-GSMS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, P. R. China
| | - Jinyue Wang
- School of Mathematics and Statistics, Xidian University, Xi'an, P. R. China
| | - Xinjie Li
- School of Mathematics and Statistics, Xidian University, Xi'an, P. R. China
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, P. R. China
| |
Collapse
|
23
|
Zou J, Liu H, Tan W, Chen YQ, Dong J, Bai SY, Wu ZX, Zeng Y. Dynamic regulation and key roles of ribonucleic acid methylation. Front Cell Neurosci 2022; 16:1058083. [PMID: 36601431 PMCID: PMC9806184 DOI: 10.3389/fncel.2022.1058083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Ribonucleic acid (RNA) methylation is the most abundant modification in biological systems, accounting for 60% of all RNA modifications, and affects multiple aspects of RNA (including mRNAs, tRNAs, rRNAs, microRNAs, and long non-coding RNAs). Dysregulation of RNA methylation causes many developmental diseases through various mechanisms mediated by N 6-methyladenosine (m6A), 5-methylcytosine (m5C), N 1-methyladenosine (m1A), 5-hydroxymethylcytosine (hm5C), and pseudouridine (Ψ). The emerging tools of RNA methylation can be used as diagnostic, preventive, and therapeutic markers. Here, we review the accumulated discoveries to date regarding the biological function and dynamic regulation of RNA methylation/modification, as well as the most popularly used techniques applied for profiling RNA epitranscriptome, to provide new ideas for growth and development.
Collapse
Affiliation(s)
- Jia Zou
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hui Liu
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yi-qi Chen
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Dong
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shu-yuan Bai
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zhao-xia Wu
- Community Health Service Center, Wuchang Hospital, Wuhan, China
| | - Yan Zeng
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China,School of Public Health, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Yan Zeng,
| |
Collapse
|
24
|
Luo Z, Lou L, Qiu W, Xu Z, Xiao X. Predicting N6-Methyladenosine Sites in Multiple Tissues of Mammals through Ensemble Deep Learning. Int J Mol Sci 2022; 23:15490. [PMID: 36555143 PMCID: PMC9778682 DOI: 10.3390/ijms232415490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant within eukaryotic messenger RNA modification, which plays an essential regulatory role in the control of cellular functions and gene expression. However, it remains an outstanding challenge to detect mRNA m6A transcriptome-wide at base resolution via experimental approaches, which are generally time-consuming and expensive. Developing computational methods is a good strategy for accurate in silico detection of m6A modification sites from the large amount of RNA sequence data. Unfortunately, the existing computational models are usually only for m6A site prediction in a single species, without considering the tissue level of species, while most of them are constructed based on low-confidence level data generated by an m6A antibody immunoprecipitation (IP)-based sequencing method, thereby restricting reliability and generalizability of proposed models. Here, we review recent advances in computational prediction of m6A sites and construct a new computational approach named im6APred using ensemble deep learning to accurately identify m6A sites based on high-confidence level data in multiple tissues of mammals. Our model im6APred builds upon a comprehensive evaluation of multiple classification methods, including four traditional classification algorithms and three deep learning methods and their ensembles. The optimal base-classifier combinations are then chosen by five-fold cross-validation test to achieve an effective stacked model. Our model im6APred can produce the area under the receiver operating characteristic curve (AUROC) in the range of 0.82-0.91 on independent tests, indicating that our model has the ability to learn general methylation rules on RNA bases and generalize to m6A transcriptome-wide identification. Moreover, AUROCs in the range of 0.77-0.96 were achieved using cross-species/tissues validation on the benchmark dataset, demonstrating differences in predictive performance at the tissue level and the need for constructing tissue-specific models for m6A site prediction.
Collapse
Affiliation(s)
| | | | | | - Zhaochun Xu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Xuan Xiao
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| |
Collapse
|
25
|
Wang H, Zhao S, Cheng Y, Bi S, Zhu X. MTDeepM6A-2S: A two-stage multi-task deep learning method for predicting RNA N6-methyladenosine sites of Saccharomyces cerevisiae. Front Microbiol 2022; 13:999506. [PMID: 36274691 PMCID: PMC9579691 DOI: 10.3389/fmicb.2022.999506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most important RNA modifications, which is involved in many biological activities. Computational methods have been developed to detect m6A sites due to their high efficiency and low costs. As one of the most widely utilized model organisms, many methods have been developed for predicting m6A sites of Saccharomyces cerevisiae. However, the generalization of these methods was hampered by the limited size of the benchmark datasets. On the other hand, over 60,000 low resolution m6A sites and more than 10,000 base resolution m6A sites of Saccharomyces cerevisiae are recorded in RMBase and m6A-Atlas, respectively. The base resolution m6A sites are often obtained from low resolution results by post calibration. In view of these, we proposed a two-stage deep learning method, named MTDeepM6A-2S, to predict RNA m6A sites of Saccharomyces cerevisiae based on RNA sequence information. In the first stage, a multi-task model with convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) deep framework was built to not only detect the low resolution m6A sites but also assign a reasonable probability for the predicted site. In the second stage, a transfer-learning strategy was used to build the model to predict the base resolution m6A sites from those low resolution m6A sites. The effectiveness of our model was validated on both training and independent test sets. The results show that our model outperforms other state-of-the-art models on the independent test set, which indicates that our model holds high potential to become a useful tool for epitranscriptomics analysis.
Collapse
|
26
|
Akbar S, Hayat M, Tahir M, Khan S, Alarfaj FK. cACP-DeepGram: Classification of anticancer peptides via deep neural network and skip-gram-based word embedding model. Artif Intell Med 2022; 131:102349. [DOI: 10.1016/j.artmed.2022.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 12/28/2022]
|
27
|
Ma L, He LN, Kang S, Gu B, Gao S, Zuo Z. Advances in detecting N6-methyladenosine modification in circRNAs. Methods 2022; 205:234-246. [PMID: 35878749 DOI: 10.1016/j.ymeth.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with covalently single-stranded closed loop structures derived from back-splicing event of linear precursor mRNAs (pre-mRNAs). N6-methyladenosine (m6A), the most abundant epigenetic modification in eukaryotic RNAs, has been shown to play a crucial role in regulating the fate and biological function of circRNAs, and thus affecting various physiological and pathological processes. Accurate identification of m6A modification in circRNAs is an essential step to fully elucidate the crosstalk between m6A and circRNAs. In recent years, the rapid development of high-throughput sequencing technology and bioinformatic methodology has propelled the establishment of a multitude of approaches to detect circRNAs and m6A modification, including in vitro-based and in silico methods. Based on this, the research community has started on a new journey to develop methods for identification of m6A modification in circRNAs. In this review, we provide a comprehensive review and evaluation of the existing methods responsible for detecting circRNAs, m6A modification, and especially, m6A modification in circRNAs, which mainly focused on those developed based on high-throughput technologies and methodology of bioinformatics. This handy reference can help researchers figure out towards which direction this field will go.
Collapse
Affiliation(s)
- Lixia Ma
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medical) of Henan University of Science and Technology, Luoyang, China
| | - Li-Na He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shiyang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bianli Gu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medical) of Henan University of Science and Technology, Luoyang, China
| | - Shegan Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medical) of Henan University of Science and Technology, Luoyang, China.
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
28
|
Abbas Z, Tayara H, Chong KT. ZayyuNet - A Unified Deep Learning Model for the Identification of Epigenetic Modifications Using Raw Genomic Sequences. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2533-2544. [PMID: 34038365 DOI: 10.1109/tcbb.2021.3083789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epigenetic modifications have a vital role in gene expression and are linked to cellular processes such as differentiation, development, and tumorigenesis. Thus, the availability of reliable and accurate methods for identifying and defining these changes facilitates greater insights into the regulatory mechanisms that rely on epigenetic modifications. The current experimental methods provide a genome-wide identification of epigenetic modifications; however, they are expensive and time-consuming. To date, several machine learning methods have been proposed for identifying modifications such as DNA N6-Methyladenine (6mA), RNA N6-Methyladenosine (m6A), DNA N4-methylcytosine (4mC), and RNA pseudouridine ( Ψ). However, these methods are task-specific computational tools and require different encoding representations of DNA/RNA sequences. In this study, we propose a unified deep learning model, called ZayyuNet, for the identification of various epigenetic modifications. The proposed model is based on an architecture called, SpinalNet, inspired by the human somatosensory system that can efficiently receive large inputs and achieve better performance. The proposed model has been evaluated on various epigenetic modifications such as 6mA, m6A, 4mC, and Ψ and the results achieved outperform current state-of-the-art models. A user-friendly web server has been built and made freely available at http://nsclbio.jbnu.ac.kr/tools/ZayyuNet/.
Collapse
|
29
|
Naseer S, Hussain W, Khan YD, Rasool N. iPhosS(Deep)-PseAAC: Identification of Phosphoserine Sites in Proteins Using Deep Learning on General Pseudo Amino Acid Compositions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1703-1714. [PMID: 33242308 DOI: 10.1109/tcbb.2020.3040747] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among all the PTMs, the protein phosphorylation is pivotal for various pathological and physiological processes. About 30 percent of eukaryotic proteins undergo the phosphorylation modification, leading to various changes in conformation, function, stability, localization, and so forth. In eukaryotic proteins, phosphorylation occurs on serine (S), Threonine (T) and Tyrosine (Y) residues. Among these all, serine phosphorylation has its own importance as it is associated with various importance biological processes, including energy metabolism, signal transduction pathways, cell cycling, and apoptosis. Thus, its identification is important, however, the in vitro, ex vivo and in vivo identification can be laborious, time-taking and costly. There is a dire need of an efficient and accurate computational model to help researchers and biologists identifying these sites, in an easy manner. Herein, we propose a novel predictor for identification of Phosphoserine sites (PhosS) in proteins, by integrating the Chou's Pseudo Amino Acid Composition (PseAAC) with deep features. We used well-known DNNs for both the tasks of learning a feature representation of peptide sequences and performing classifications. Among different DNNs, the best score is shown by Covolutional Neural Network based model which renders CNN based prediction model the best for Phosphoserine prediction. Based on these results, it is concluded that the proposed model can help to identify PhosS sites in a very efficient and accurate manner which can help scientists understand the mechanism of this modification in proteins.
Collapse
|
30
|
Zhanga S, Yao Y, Wang J, Liang Y. Identification of DNA N4-methylcytosine sites based on multi-source features and gradient boosting decision tree. Anal Biochem 2022; 652:114746. [DOI: 10.1016/j.ab.2022.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
|
31
|
m6A-Finder: Detecting m6A methylation sites from RNA transcriptomes using physical and statistical properties based features. Comput Biol Chem 2022; 97:107640. [DOI: 10.1016/j.compbiolchem.2022.107640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 11/23/2022]
|
32
|
Shahid M, Ilyas M, Hussain W, Khan YD. ORI-Deep: improving the accuracy for predicting origin of replication sites by using a blend of features and long short-term memory network. Brief Bioinform 2022; 23:bbac001. [PMID: 35048955 DOI: 10.1093/bib/bbac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 11/14/2022] Open
Abstract
Replication of DNA is an important process for the cell division cycle, gene expression regulation and other biological evolution processes. It also has a crucial role in a living organism's physical growth and structure. Replication of DNA comprises of three stages known as initiation, elongation and termination, whereas the origin of replication sites (ORI) is the location of initiation of the DNA replication process. There exist various methodologies to identify ORIs in the genomic sequences, however, these methods have used either extensive computations for execution, or have limited optimization for the large datasets. Herein, a model called ORI-Deep is proposed to identify ORIs from the multiple cell type genomic sequence benchmark data. An efficient method is proposed using a deep neural network to identify ORIs for four different eukaryotic species. For better representation of data, a feature vector is constructed using statistical moments for the training and testing of data and is further fed to a long short-term memory (LSTM) network. To prove the effectiveness of the proposed model, we applied several validation techniques at different levels to obtain seven accuracy metrics, and the accuracy score for self-consistency, 10-fold cross-validation, jackknife and the independent set test is observed to be 0.977, 0.948, 0.976 and 0.977, respectively. Based on the results, it can be concluded that ORI-Deep can efficiently predict the sites of origin replication in DNA sequence with high accuracy. Webserver for ORI-Deep is available at (https://share.streamlit.io/waqarhusain/orideep/main/app.py), whereas source code is available at (https://github.com/WaqarHusain/OriDeep).
Collapse
Affiliation(s)
- Mahwish Shahid
- School of Systems and Technologies, University of Management and Technology, Lahore, Pakistan
| | - Maham Ilyas
- University of Management and Technology, Lahore, Pakistan
| | - Waqar Hussain
- University of Management and Technology, Lahore, Pakistan
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
33
|
Ali F, Akbar S, Ghulam A, Maher ZA, Unar A, Talpur DB. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information. Comput Biol Med 2021; 139:105006. [PMID: 34749096 DOI: 10.1016/j.compbiomed.2021.105006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
In extremely cold environments, living organisms like plants, animals, fishes, and microbes can die due to the intracellular ice formation in their bodies. To sustain life in such cold environments, some cold-blooded species produced Antifreeze proteins (AFPs), also called ice-binding proteins. AFPs are not only limited to the medical field but also have diverse significance in the area of biotechnology, agriculture, and the food industry. Different AFPs exhibit high heterogeneity in their structures and sequences. Keeping the significance of AFPs, several machine-learning-based models have been developed by scientists for the prediction of AFPs. However, due to the complex and diverse nature of AFPs, the prediction performance of the existing methods is limited. Therefore, it is highly indispensable for researchers to develop a reliable computational model that can accurately predict AFPs. In this connection, this study presents a novel predictor for AFPs, named AFP-CMBPred. The sequences of AFPs are formulated via four different feature representation methods, such as Amphiphilic pseudo amino acid composition (Amp-PseAAC), Dipeptide Deviation from Expected Mean (DDE), Multi-Blocks Position Specific Scoring Matrix (MB-PSSM), and Consensus Sequence-based on Multi-Blocks Position Specific Scoring Matrix (CS-MB-PSSM) to collect local and global descriptors. In the next step, the extracted feature vectors are evaluated via Support Vector Machine (SVM) and Random Forest (RF) based classification learners. The prediction performance of both classifiers is further assessed using three validation methods i.e., jackknife test, 10-fold cross-validation test, and independent test. After examining the prediction rates of all validation tests, it was found that our proposed model achieved the higher prediction accuracies of ∼2.65%, ∼2.84%, and ∼3.37% using jackknife, K-fold, and independent test, respectively. The experimental outcomes validate that our proposed "AFP-CMBPred" predictor secured the highest prediction results than the existing models for the identification of AFPs. It is further anticipated that our proposed AFP-CMBPred model will be considered a valuable tool in the research academia and drug development.
Collapse
Affiliation(s)
- Farman Ali
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
| | - Ali Ghulam
- Computerization and Network Section, Sindh Agriculture University, Tandojam, Pakistan
| | | | - Ahsanullah Unar
- School of Life Science, University of Science and Technology, China
| | - Dhani Bux Talpur
- School of Information and Communication Engineering, Guilin University of Electronic Technology, Guilin, China
| |
Collapse
|
34
|
Alghamdi W, Alzahrani E, Ullah MZ, Khan YD. 4mC-RF: Improving the prediction of 4mC sites using composition and position relative features and statistical moment. Anal Biochem 2021; 633:114385. [PMID: 34571005 DOI: 10.1016/j.ab.2021.114385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/28/2023]
Abstract
N4-methylcytosine (4 mC) is an important epigenetic modification that occurs enzymatically by the action of DNA methyltransferases. 4 mC sites exist in prokaryotes and eukaryotes while playing a vital role in regulating gene expression, DNA replication, and cell cycle. The efficient and accurate prediction of 4 mC sites has a significant role in the insight of 4 mC biological properties and functions. Therefore, a sequence-based predictor is proposed, namely 4 mC-RF, for identifying 4 mC sites through the integration of statistical moments along with position, and composition-dependent features. Relative and absolute position-based features are computed to extract optimal features. A popular machine learning classifier Random Forest was used for training the model. Validation results were obtained through rigorous processes of self-consistency, 10-fold cross-validation, Independent set testing, and Jackknife yielding 95.1%, 95.2%, 97.0%, and 94.7% accuracies, respectively. Our proposed model depicts the highest prediction accuracies as compared to existing models. Subsequently, the developed 4 mC-RF model was constructed into a web server. A significant and more accurate predictor of 4 mC Methylcytosine sites helps experimental scientists to gather faster, efficient, and cost-effective results.
Collapse
Affiliation(s)
- Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P. O. Box 80221, Jeddah 21589, Saudi Arabia.
| | - Ebraheem Alzahrani
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Malik Zaka Ullah
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and Technology, Lahore 54770, Pakistan.
| |
Collapse
|
35
|
Akbar S, Ahmad A, Hayat M, Rehman AU, Khan S, Ali F. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model. Comput Biol Med 2021; 137:104778. [PMID: 34481183 DOI: 10.1016/j.compbiomed.2021.104778] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is a worldwide illness caused by the bacteria Mycobacterium tuberculosis. Owing to the high prevalence of multidrug-resistant tuberculosis, numerous traditional strategies for developing novel alternative therapies have been presented. The effectiveness and dependability of these procedures are not always consistent. Peptide-based therapy has recently been regarded as a preferable alternative due to its excellent selectivity in targeting specific cells without affecting the normal cells. However, due to the rapid growth of the peptide samples, predicting TB accurately has become a challenging task. To effectively identify antitubercular peptides, an intelligent and reliable prediction model is indispensable. An ensemble learning approach was used in this study to improve expected results by compensating for the shortcomings of individual classification algorithms. Initially, three distinct representation approaches were used to formulate the training samples: k-space amino acid composition, composite physiochemical properties, and one-hot encoding. The feature vectors of the applied feature extraction methods are then combined to generate a heterogeneous vector. Finally, utilizing individual and heterogeneous vectors, five distinct nature classification models were used to evaluate prediction rates. In addition, a genetic algorithm-based ensemble model was used to improve the suggested model's prediction and training capabilities. Using Training and independent datasets, the proposed ensemble model achieved an accuracy of 94.47% and 92.68%, respectively. It was observed that our proposed "iAtbP-Hyb-EnC" model outperformed and reported ~10% highest training accuracy than existing predictors. The "iAtbP-Hyb-EnC" model is suggested to be a reliable tool for scientists and might play a valuable role in academic research and drug discovery. The source code and all datasets are publicly available at https://github.com/Farman335/iAtbP-Hyb-EnC.
Collapse
Affiliation(s)
- Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Ashfaq Ahmad
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Ateeq Ur Rehman
- Department of Information Technology, The University of Haripur, KP, Pakistan.
| | - Salman Khan
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Farman Ali
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
36
|
Akmal MA, Hussain W, Rasool N, Khan YD, Khan SA, Chou KC. Using CHOU'S 5-Steps Rule to Predict O-Linked Serine Glycosylation Sites by Blending Position Relative Features and Statistical Moment. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2045-2056. [PMID: 31985438 DOI: 10.1109/tcbb.2020.2968441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glycosylation of proteins in eukaryote cells is an important and complicated post-translation modification due to its pivotal role and association with crucial physiological functions within most of the proteins. Identification of glycosylation sites in a polypeptide chain is not an easy task due to multiple impediments. Analytical identification of these sites is expensive and laborious. There is a dire need to develop a reliable computational method for precise determination of such sites which can help researchers to save time and effort. Herein, we propose a novel predictor namely iGlycoS-PseAAC by integrating the Chou's Pseudo Amino Acid Composition (PseAAC) and relative/absolute position-based features. The self-consistency results show that the accuracy revealed by the model using the benchmark dataset for prediction of O-linked glycosylation having serine sites is 98.8 percent. The overall accuracy of predictor achieved through 10-fold cross validation by combining the positive and negative results is 97.2 percent. The overall accuracy achieved through Jackknife test is 96.195 percent by aggregating of all the prediction results. Thus the proposed predictor can help in predicting the O-linked glycosylated serine sites in an efficient and accurate way. The overall results show that the accuracy of the iGlycoS-PseAAC is higher than the existing tools.
Collapse
|
37
|
Wang M, Xie J, Xu S. M6A-BiNP: predicting N 6-methyladenosine sites based on bidirectional position-specific propensities of polynucleotides and pointwise joint mutual information. RNA Biol 2021; 18:2498-2512. [PMID: 34161188 PMCID: PMC8632114 DOI: 10.1080/15476286.2021.1930729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) plays an important role in various biological processes. Identifying m6A site is a key step in exploring its biological functions. One of the biggest challenges in identifying m6A sites is how to extract features comprising rich categorical information to distinguish m6A and non-m6A sites. To address this challenge, we propose bidirectional dinucleotide and trinucleotide position-specific propensities, respectively, in this paper. Based on this, we propose two feature-encoding algorithms: Position-Specific Propensities and Pointwise Mutual Information (PSP-PMI) and Position-Specific Propensities and Pointwise Joint Mutual Information (PSP-PJMI). PSP-PMI is based on the bidirectional dinucleotide propensity and the pointwise mutual information, while PSP-PJMI is based on the bidirectional trinucleotide position-specific propensity and the proposed pointwise joint mutual information in this paper. We introduce parameters α and β in PSP-PMI and PSP-PJMI, respectively, to represent the distance from the nucleotide to its forward or backward adjacent nucleotide or dinucleotide, so as to extract features containing local and global classification information. Finally, we propose the M6A-BiNP predictor based on PSP-PMI or PSP-PJMI and SVM classifier. The 10-fold cross-validation experimental results on the benchmark datasets of non-single-base resolution and single-base resolution demonstrate that PSP-PMI and PSP-PJMI can extract features with strong capabilities to identify m6A and non-m6A sites. The M6A-BiNP predictor based on our proposed feature encoding algorithm PSP-PJMI is better than the state-of-the-art predictors, and it is so far the best model to identify m6A and non-m6A sites.
Collapse
Affiliation(s)
- Mingzhao Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Juanying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Shengquan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
38
|
Malebary SJ, Khan YD. Evaluating machine learning methodologies for identification of cancer driver genes. Sci Rep 2021; 11:12281. [PMID: 34112883 PMCID: PMC8192921 DOI: 10.1038/s41598-021-91656-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is driven by distinctive sorts of changes and basic variations in genes. Recognizing cancer driver genes is basic for accurate oncological analysis. Numerous methodologies to distinguish and identify drivers presently exist, but efficient tools to combine and optimize them on huge datasets are few. Most strategies for prioritizing transformations depend basically on frequency-based criteria. Strategies are required to dependably prioritize organically dynamic driver changes over inert passengers in high-throughput sequencing cancer information sets. This study proposes a model namely PCDG-Pred which works as a utility capable of distinguishing cancer driver and passenger attributes of genes based on sequencing data. Keeping in view the significance of the cancer driver genes an efficient method is proposed to identify the cancer driver genes. Further, various validation techniques are applied at different levels to establish the effectiveness of the model and to obtain metrics like accuracy, Mathew's correlation coefficient, sensitivity, and specificity. The results of the study strongly indicate that the proposed strategy provides a fundamental functional advantage over other existing strategies for cancer driver genes identification. Subsequently, careful experiments exhibit that the accuracy metrics obtained for self-consistency, independent set, and cross-validation tests are 91.08%., 87.26%, and 92.48% respectively.
Collapse
Affiliation(s)
- Sharaf J Malebary
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
39
|
Yao Y, Zhang S, Liang Y. iORI-ENST: identifying origin of replication sites based on elastic net and stacking learning. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:317-331. [PMID: 33730950 DOI: 10.1080/1062936x.2021.1895884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
DNA replication is not only the basis of biological inheritance but also the most fundamental process in all living organisms. It plays a crucial role in the cell-division cycle and gene expression regulation. Hence, the accurate identification of the origin of replication sites (ORIs) has a great meaning for further understanding the regulatory mechanism of gene expression and treating genic diseases. In this paper, a novel, feasible and powerful model, namely, iORI-ENST is designed for identifying ORIs. Firstly, we extract the different features by incorporating mono-nucleotide binary encoding and dinucleotide-based spatial autocorrelation. Subsequently, elastic net is utilized as the feature selection method to select the optimal feature set. And then stacking learning is employed to predict ORIs and non-ORIs, which contains random forest, adaboost, gradient boosting decision tree, extra trees and support vector machine. Finally, the ORI sites are identified on the benchmark datasets S1 and S2 with their accuracies of 91.41% and 95.07%, respectively. Meanwhile, an independent dataset S3 is employed to verify the validation and transferability of our model and its accuracy reaches 91.10%. Comparing with state-of-the-art methods, our model achieves more remarkable performance. The results show our model is a feasible, effective and powerful tool for identifying ORIs. The source code and datasets are available at https://github.com/YingyingYao/iORI-ENST.
Collapse
Affiliation(s)
- Y Yao
- School of Mathematics and Statistics, Xidian University, Xi'an, P. R. China
| | - S Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, P. R. China
| | - Y Liang
- School of Science, Xi'an Polytechnic University, Xi'an, P. R. China
| |
Collapse
|
40
|
Awais M, Hussain W, Khan YD, Rasool N, Khan SA, Chou KC. iPhosH-PseAAC: Identify Phosphohistidine Sites in Proteins by Blending Statistical Moments and Position Relative Features According to the Chou's 5-Step Rule and General Pseudo Amino Acid Composition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:596-610. [PMID: 31144645 DOI: 10.1109/tcbb.2019.2919025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein phosphorylation is one of the key mechanism in prokaryotes and eukaryotes and is responsible for various biological functions such as protein degradation, intracellular localization, the multitude of cellular processes, molecular association, cytoskeletal dynamics, and enzymatic inhibition/activation. Phosphohistidine (PhosH) has a key role in a number of biological processes, including central metabolism to signalling in eukaryotes and bacteria. Thus, identification of phosphohistidine sites in a protein sequence is crucial, and experimental identification can be expensive, time-taking, and laborious. To address this problem, here, we propose a novel computational model namely iPhosH-PseAAC for prediction of phosphohistidine sites in a given protein sequence using pseudo amino acid composition (PseAAC), statistical moments, and position relative features. The results of the proposed predictor are validated through self-consistency testing, 10-fold cross-validation, and jackknife testing. The self-consistency validation gave the 100 percent accuracy, whereas, for cross-validation, the accuracy achieved is 94.26 percent. Moreover, jackknife testing gave 97.07 percent accuracy for the proposed model. Thus, the proposed model iPhosH-PseAAC for prediction of iPhosH site has the great ability to predict the PhosH sites in given proteins.
Collapse
|
41
|
Zhang L, Qin X, Liu M, Xu Z, Liu G. DNN-m6A: A Cross-Species Method for Identifying RNA N6-Methyladenosine Sites Based on Deep Neural Network with Multi-Information Fusion. Genes (Basel) 2021; 12:354. [PMID: 33670877 PMCID: PMC7997228 DOI: 10.3390/genes12030354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
As a prevalent existing post-transcriptional modification of RNA, N6-methyladenosine (m6A) plays a crucial role in various biological processes. To better radically reveal its regulatory mechanism and provide new insights for drug design, the accurate identification of m6A sites in genome-wide is vital. As the traditional experimental methods are time-consuming and cost-prohibitive, it is necessary to design a more efficient computational method to detect the m6A sites. In this study, we propose a novel cross-species computational method DNN-m6A based on the deep neural network (DNN) to identify m6A sites in multiple tissues of human, mouse and rat. Firstly, binary encoding (BE), tri-nucleotide composition (TNC), enhanced nucleic acid composition (ENAC), K-spaced nucleotide pair frequencies (KSNPFs), nucleotide chemical property (NCP), pseudo dinucleotide composition (PseDNC), position-specific nucleotide propensity (PSNP) and position-specific dinucleotide propensity (PSDP) are employed to extract RNA sequence features which are subsequently fused to construct the initial feature vector set. Secondly, we use elastic net to eliminate redundant features while building the optimal feature subset. Finally, the hyper-parameters of DNN are tuned with Bayesian hyper-parameter optimization based on the selected feature subset. The five-fold cross-validation test on training datasets show that the proposed DNN-m6A method outperformed the state-of-the-art method for predicting m6A sites, with an accuracy (ACC) of 73.58%-83.38% and an area under the curve (AUC) of 81.39%-91.04%. Furthermore, the independent datasets achieved an ACC of 72.95%-83.04% and an AUC of 80.79%-91.09%, which shows an excellent generalization ability of our proposed method.
Collapse
Affiliation(s)
- Lu Zhang
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; (L.Z.); (X.Q.); (M.L.)
| | - Xinyi Qin
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; (L.Z.); (X.Q.); (M.L.)
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; (L.Z.); (X.Q.); (M.L.)
| | - Ziwei Xu
- Polytech Nantes, Bâtiment Ireste, 44300 Nantes, France;
| | - Guangzhong Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; (L.Z.); (X.Q.); (M.L.)
| |
Collapse
|
42
|
Khan YD, Alzahrani E, Alghamdi W, Ullah MZ. Sequence-based Identification of Allergen Proteins Developed by Integration of PseAAC and Statistical Moments via 5-Step Rule. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200424085947] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background:
Allergens are antigens that can stimulate an atopic type I human
hypersensitivity reaction by an immunoglobulin E (IgE) reaction. Some proteins are naturally
allergenic than others. The challenge for toxicologists is to identify properties that allow proteins
to cause allergic sensitization and allergic diseases. The identification of allergen proteins is a very
critical and pivotal task. The experimental identification of protein functions is a hectic, laborious
and costly task; therefore, computer scientists have proposed various methods in the field of
computational biology and bioinformatics using various data science approaches. Objectives:
Herein, we report a novel predictor for the identification of allergen proteins.
Methods:
For feature extraction, statistical moments and various position-based features have been
incorporated into Chou’s pseudo amino acid composition (PseAAC), and are used for training of a
neural network.
Results:
The predictor is validated through 10-fold cross-validation and Jackknife testing, which
gave 99.43% and 99.87% accurate results.
Conclusions:
Thus, the proposed predictor can help in predicting the Allergen proteins in an
efficient and accurate way and can provide baseline data for the discovery of new drugs and
biomarkers.
Collapse
Affiliation(s)
- Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, C II Johar Town, Lahore 54770, Pakistan
| | - Ebraheem Alzahrani
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 80221, Jeddah, Saudi Arabia
| | - Malik Zaka Ullah
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
43
|
Naseer S, Hussain W, Khan YD, Rasool N. Optimization of serine phosphorylation prediction in proteins by comparing human engineered features and deep representations. Anal Biochem 2020; 615:114069. [PMID: 33340540 DOI: 10.1016/j.ab.2020.114069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 02/01/2023]
Abstract
Deep representations can be used to replace human-engineered representations, as such features are constrained by certain limitations. For the prediction of protein post-translation modifications (PTMs) sites, research community uses different feature extraction techniques applied on Pseudo amino acid compositions (PseAAC). Serine phosphorylation is one of the most important PTM as it is the most occurring, and is important for various biological functions. Creating efficient representations from large protein sequences, to predict PTM sites, is a time and resource intensive task. In this study we propose, implement and evaluate use of Deep learning to learn effective protein data representations from PseAAC to develop data driven PTM detection systems and compare the same with two human representations.. The comparisons are performed by training an xgboost based classifier using each representation. The best scores were achieved by RNN-LSTM based deep representation and CNN based representation with an accuracy score of 81.1% and 78.3% respectively. Human engineered representations scored 77.3% and 74.9% respectively. Based on these results, it is concluded that the deep features are promising feature engineering replacement to identify PhosS sites in a very efficient and accurate manner which can help scientists understand the mechanism of this modification in proteins.
Collapse
Affiliation(s)
- Sheraz Naseer
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan.
| | - Waqar Hussain
- National Center of Artificial Intelligence, Punjab University College of Information Technology, University of the Punjab, Lahore, Pakistan; Center for Professional & Applied Studies, Lahore, Pakistan
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| | - Nouman Rasool
- Center for Professional & Applied Studies, Lahore, Pakistan
| |
Collapse
|
44
|
Identification of antioxidant proteins using a discriminative intelligent model of k-space amino acid pairs based descriptors incorporating with ensemble feature selection. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Khan F, Khan M, Iqbal N, Khan S, Muhammad Khan D, Khan A, Wei DQ. Prediction of Recombination Spots Using Novel Hybrid Feature Extraction Method via Deep Learning Approach. Front Genet 2020; 11:539227. [PMID: 33093842 PMCID: PMC7527634 DOI: 10.3389/fgene.2020.539227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023] Open
Abstract
Meiotic recombination is the driving force of evolutionary development and an important source of genetic variation. The meiotic recombination does not take place randomly in a chromosome but occurs in some regions of the chromosome. A region in chromosomes with higher rate of meiotic recombination events are considered as hotspots and a region where frequencies of the recombination events are lower are called coldspots. Prediction of meiotic recombination spots provides useful information about the basic functionality of inheritance and genome diversity. This study proposes an intelligent computational predictor called iRSpots-DNN for the identification of recombination spots. The proposed predictor is based on a novel feature extraction method and an optimized deep neural network (DNN). The DNN was employed as a classification engine whereas, the novel features extraction method was developed to extract meaningful features for the identification of hotspots and coldspots across the yeast genome. Unlike previous algorithms, the proposed feature extraction avoids bias among different selected features and preserved the sequence discriminant properties along with the sequence-structure information simultaneously. This study also considered other effective classifiers named support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF) to predict recombination spots. Experimental results on a benchmark dataset with 10-fold cross-validation showed that iRSpots-DNN achieved the highest accuracy, i.e., 95.81%. Additionally, the performance of the proposed iRSpots-DNN is significantly better than the existing predictors on a benchmark dataset. The relevant benchmark dataset and source code are freely available at: https://github.com/Fatima-Khan12/iRspot_DNN/tree/master/iRspot_DNN.
Collapse
Affiliation(s)
- Fatima Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mukhtaj Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Nadeem Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Dost Muhammad Khan
- Department of Statistics, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
46
|
Chou KC. An Insightful 10-year Recollection Since the Emergence of the 5-steps Rule. Curr Pharm Des 2020; 25:4223-4234. [PMID: 31782354 DOI: 10.2174/1381612825666191129164042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE One of the most challenging and also the most difficult problems is how to formulate a biological sequence with a vector but considerably keep its sequence order information. METHODS To address such a problem, the approach of Pseudo Amino Acid Components or PseAAC has been developed. RESULTS AND CONCLUSION It has become increasingly clear via the 10-year recollection that the aforementioned proposal has been indeed very powerful.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, Massachusetts 02478, United States.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
47
|
Liu L, Song B, Ma J, Song Y, Zhang SY, Tang Y, Wu X, Wei Z, Chen K, Su J, Rong R, Lu Z, de Magalhães JP, Rigden DJ, Zhang L, Zhang SW, Huang Y, Lei X, Liu H, Meng J. Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Comput Struct Biotechnol J 2020; 18:1587-1604. [PMID: 32670500 PMCID: PMC7334300 DOI: 10.1016/j.csbj.2020.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional RNA modification occurs on all types of RNA and plays a vital role in regulating every aspect of RNA function. Thanks to the development of high-throughput sequencing technologies, transcriptome-wide profiling of RNA modifications has been made possible. With the accumulation of a large number of high-throughput datasets, bioinformatics approaches have become increasing critical for unraveling the epitranscriptome. We review here the recent progress in bioinformatics approaches for deciphering the epitranscriptomes, including epitranscriptome data analysis techniques, RNA modification databases, disease-association inference, general functional annotation, and studies on RNA modification site prediction. We also discuss the limitations of existing approaches and offer some future perspectives.
Collapse
Affiliation(s)
- Lian Liu
- School of Computer Sciences, Shannxi Normal University, Xi’an, Shaanxi 710119, China
| | - Bowen Song
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Jiani Ma
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Yi Song
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Song-Yao Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Xiangyu Wu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Kunqi Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Jionglong Su
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Rong Rong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Zhiliang Lu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - João Pedro de Magalhães
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Shao-Wu Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiujuan Lei
- School of Computer Sciences, Shannxi Normal University, Xi’an, Shaanxi 710119, China
| | - Hui Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|
48
|
Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations. Neural Netw 2020; 129:385-391. [PMID: 32593932 DOI: 10.1016/j.neunet.2020.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 01/24/2023]
Abstract
N6-methyladenosine (m6A) is a well-studied and most common interior messenger RNA (mRNA) modification that plays an important function in cell development. N6A is found in all kingdoms of life and many other cellular processes such as RNA splicing, immune tolerance, regulatory functions, RNA processing, and cancer. Despite the crucial role of m6A in cells, it was targeted computationally, but unfortunately, the obtained results were unsatisfactory. It is imperative to develop an efficient computational model that can truly represent m6A sites. In this regard, an intelligent and highly discriminative computational model namely: m6A-word2vec is introduced for the discrimination of m6A sites. Here, a concept of natural language processing in the form of word2vec is used to represent the motif of the target class automatically. These motifs (numerical descriptors) are automatically targeted from the human genome without any clear definition. Further, the extracted feature space is then forwarded to the convolution neural network model as input for prediction. The developed computational model obtained 83.17%, 92.69%, and 90.50% accuracy for benchmark datasets S1, S2, and S3, respectively, using a 10-fold cross-validation test. The predictive outcomes validate that the developed intelligent computational model showed better performance compared to existing computational models. It is thus greatly estimated that the introduced computational model "m6A-word2vec" may be a supportive and practical tool for elementary and pharmaceutical research such as in drug design along with academia.
Collapse
|
49
|
|
50
|
Zheng L, Huang S, Mu N, Zhang H, Zhang J, Chang Y, Yang L, Zuo Y. RAACBook: a web server of reduced amino acid alphabet for sequence-dependent inference by using Chou's five-step rule. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5650975. [PMID: 31802128 PMCID: PMC6893003 DOI: 10.1093/database/baz131] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
By reducing amino acid alphabet, the protein complexity can be significantly simplified, which could improve computational efficiency, decrease information redundancy and reduce chance of overfitting. Although some reduced alphabets have been proposed, different classification rules could produce distinctive results for protein sequence analysis. Thus, it is urgent to construct a systematical frame for reduced alphabets. In this work, we constructed a comprehensive web server called RAACBook for protein sequence analysis and machine learning application by integrating reduction alphabets. The web server contains three parts: (i) 74 types of reduced amino acid alphabet were manually extracted to generate 673 reduced amino acid clusters (RAACs) for dealing with unique protein problems. It is easy for users to select desired RAACs from a multilayer browser tool. (ii) An online tool was developed to analyze primary sequence of protein. The tool could produce K-tuple reduced amino acid composition by defining three correlation parameters (K-tuple, g-gap, λ-correlation). The results are visualized as sequence alignment, mergence of RAA composition, feature distribution and logo of reduced sequence. (iii) The machine learning server is provided to train the model of protein classification based on K-tuple RAAC. The optimal model could be selected according to the evaluation indexes (ROC, AUC, MCC, etc.). In conclusion, RAACBook presents a powerful and user-friendly service in protein sequence analysis and computational proteomics. RAACBook can be freely available at http://bioinfor.imu.edu.cn/raacbook. Database URL: http://bioinfor.imu.edu.cn/raacbook
Collapse
Affiliation(s)
- Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Shenghui Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Nengjiang Mu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Haoyue Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Jiayu Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Yu Chang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Baojian Road No.157, Harbin 150081, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| |
Collapse
|